File size: 5,499 Bytes
391257f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MljifiTVCT0_"
      },
      "source": [
        "# 推論用コード\n",
        "Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。  \n",
        "このコードはunslothライブラリを用いてモデルを読み込み、推論するためのコードとなります。\n",
        "このコードはサンプルの推論用コードとほぼ同一であり、実行すればそのまま提出用のjsonlファイルが作成されます。\n",
        "\n",
        "なお、HuggingFaceのトークンの部分は実行者に合わせ適宜変更してください。"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "I5B5MOHuBy8b"
      },
      "outputs": [],
      "source": [
        "%%capture\n",
        "!pip install unsloth\n",
        "!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GM7SNRtACg9V",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "607ad0ee-6e25-4e07-8c45-33ef0161e656"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
            "🦥 Unsloth Zoo will now patch everything to make training faster!\n"
          ]
        }
      ],
      "source": [
        "from unsloth import FastLanguageModel\n",
        "import torch\n",
        "import json"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JmdUATTVCtyr"
      },
      "outputs": [],
      "source": [
        "user_name = \"OotoroMS\"\n",
        "model_name = \"llm-jp-3-13b-it_lora\"\n",
        "\n",
        "model_address = f\"{user_name}/{model_name}\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "TB6Hzx-2B5g8"
      },
      "outputs": [],
      "source": [
        "max_seq_length = 2048\n",
        "dtype = None\n",
        "load_in_4bit = True\n",
        "\n",
        "model, tokenizer = FastLanguageModel.from_pretrained(\n",
        "    model_name = model_address,\n",
        "    max_seq_length = max_seq_length,\n",
        "    dtype = dtype,\n",
        "    load_in_4bit = load_in_4bit,\n",
        "    token = \"HF_TOKEN\",\n",
        ")\n",
        "FastLanguageModel.for_inference(model)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "fg_yURyiB8o6"
      },
      "outputs": [],
      "source": [
        "# データセットの読み込み。\n",
        "# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。\n",
        "datasets = []\n",
        "with open(\"./elyza-tasks-100-TV_0.jsonl\", \"r\") as f:\n",
        "    item = \"\"\n",
        "    for line in f:\n",
        "      line = line.strip()\n",
        "      item += line\n",
        "      if item.endswith(\"}\"):\n",
        "        datasets.append(json.loads(item))\n",
        "        item = \"\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "TwfZEra1CEJo",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "bca86293-c1f2-45bf-f19c-9910d4e0118f"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "100%|██████████| 100/100 [10:31<00:00,  6.31s/it]\n"
          ]
        }
      ],
      "source": [
        "from tqdm import tqdm\n",
        "\n",
        "# 推論\n",
        "results = []\n",
        "for dt in tqdm(datasets):\n",
        "  input = dt[\"input\"]\n",
        "\n",
        "  prompt = f\"\"\"### 指示\\n{input}\\n### 回答\\n\"\"\"\n",
        "\n",
        "  inputs = tokenizer([prompt], return_tensors = \"pt\").to(model.device)\n",
        "\n",
        "  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)\n",
        "  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\\n### 回答')[-1]\n",
        "\n",
        "  results.append({\"task_id\": dt[\"task_id\"], \"input\": input, \"output\": prediction})"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "voAPnXp5CKRL"
      },
      "outputs": [],
      "source": [
        "with open(f\"./{model_name}_output.jsonl\", 'w', encoding='utf-8') as f:\n",
        "    for result in results:\n",
        "        json.dump(result, f, ensure_ascii=False)\n",
        "        f.write('\\n')"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "L4",
      "machine_shape": "hm"
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "nbformat": 4,
  "nbformat_minor": 0
}