File size: 12,142 Bytes
7a01e46
 
7d15677
 
 
 
5997675
 
 
 
 
 
 
7a01e46
7d15677
 
036be44
 
 
7d15677
 
 
 
 
5997675
 
7d15677
 
 
 
 
 
 
 
036be44
 
7d15677
036be44
7d15677
 
036be44
7d15677
 
 
036be44
7d15677
036be44
7d15677
 
036be44
 
 
 
 
 
 
 
 
 
 
 
 
 
7d15677
 
 
 
 
 
 
5997675
 
036be44
5997675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036be44
 
 
 
 
 
5997675
7d15677
 
5997675
 
 
7d15677
 
5997675
 
7d15677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5997675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d15677
 
 
 
 
 
 
 
 
 
 
 
 
 
5997675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d15677
 
 
 
5997675
 
 
 
7d15677
 
 
 
 
5997675
7d15677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5997675
 
 
 
7d15677
 
 
 
 
5997675
7d15677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5997675
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
---
license: llama2
language:
- en
datasets:
- OpenAssistant/oasst1
- ehartford/dolphin
- rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
- argilla/databricks-dolly-15k-curated-multilingual
library_name: transformers
pipeline_tag: text-generation
tags:
- sft
---
# Open-Assistant Llama2 70B SFT v10

This model is an Open-Assistant fine-tuning of Meta's [Llama2 70B](https://huggingface.co/meta-llama/Llama-2-70b) LLM. 
It was fine-tuned in two stages, first on a mix of synthetic instrunctions and coding tasks and then in a "polishing" stage
on the best human demonstrations collected at [open-assistant.io](https://open-assistant.io/) up to July 23, 2023 (see *Configuration Details* below).

## Model Details

- **Finetuned from:** [meta-llama/Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b) via [epfLLM/old-Megatron-LM](https://github.com/epfLLM/old-Megatron-LM)
- **Model type:** Causal decoder-only transformer language model
- **Language:** English (and limited capabilities in German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish)
- **Weights & Biases training logs:** [Stage 1](https://wandb.ai/open-assistant/public-sft/runs/run45_oasst_pre10_llama2_70b) (1 epoch pretrain-mix, 12k steps), [Stage 2](https://wandb.ai/open-assistant/public-sft/runs/run46_oasst_sft10_llama2_70b) (3 epochs oasst top-1, 519 steps)
- **Demo:** [Continuations for 250 random prompts (TGI, 4bit nf4 quantization)](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-08-22_OpenAssistant_llama2-70b-oasst-sft-v10_sampling_noprefix2_nf4.json%0A)
- **Evaluation** [FastEval-OpenAssistant Overview](https://tju01.github.io/FastEval-OpenAssistant/) (using [FastEval](https://github.com/FastEval/FastEval) & [vLLM](https://github.com/vllm-project/vllm)) 
- **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)


## Prompting / Prompt Template

Due to public demand we changed the prompt-template for this model from custom prompter/assistant tokens to OpenAI's [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) standard prompt format.
We hope that this leads to greater compatibility with chat inference/frontend applications.

Prompt template:

```
"""
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
"""
```

The model input can contain multiple conversation turns between user and assistant, e.g.
```
<|im_start|>user
{prompt 1}<|im_end|>
<|im_start|>assistant
{reply 1}<|im_end|>
<|im_start|>user
{prompt 2}<|im_end|>
<|im_start|>assistant
(...)
```

The model was partly trained with orca system messages.  
For inference we recommend to use the official [Llama2 system message](https://github.com/facebookresearch/llama/blob/ea9f33d6d3ea8ed7d560d270986407fd6c2e52b7/example_chat_completion.py#L57-L61):
```
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<|im_end|>
```

### Credits & Special Thanks

- Thanks to [Meta AI](https://ai.meta.com/) for training and releasing the Llama2 model.
- Compute was generously sponsored by the eplf [Machine Learning and Optimization Laboratory](https://www.epfl.ch/labs/mlo/).
- The open-source [epfLLM/Megatron-LLM](https://github.com/epfLLM/Megatron-LLM) trainer was used for fine-tuning.
- [rombodawg](https://huggingface.co/rombodawg) curated the [LosslessMegaCodeTrainingV2_1m_Evol_Uncensored](https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored) dataset.
- [ehartford](https://huggingface.co/ehartford) generated and published the [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the [ehartford/oa_leet10k](https://huggingface.co/datasets/ehartford/oa_leet10k) datasets.
- [Argilla](https://huggingface.co/argilla) curated and published the [argilla/databricks-dolly-15k-curated-multilingual] dataset.
- [shahules786](https://github.com/shahules786) de-duped and filtered the Dolphin dataset with a cluster-center approach and generated the orca-best (ocra-chat) dataset.
- [andreaskoepf](https://github.com/andreaskoepf/) prepared & orchestrated the training.

We want to especially thank everyone who contributed in the crowed-sourced Open-Assistant dataset creation on https://open-assistant.io/ - without you this project would not have been possible.

## Ethical Considerations and Limitations

Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. 
For these reasons, as with all LLMs, the potential outputs of llama2-70b-oasst-sft-v10 cannot be predicted
in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses
to user prompts. Therefore, before deploying any applications of llama2-70b-oasst-sft-v10, developers should
perform safety testing and tuning tailored to their specific applications of the model.

Please see Meta's [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/).

## Note regarding inference with TGI

During evaluation we noticed that this 70B model produced extremely poor outputs when loaded it was loaded in 16 bit precision sharded in [TGI](https://github.com/huggingface/text-generation-inference).
In contrast the model could be evaluated without problem using [vLLM](https://github.com/vllm-project/vllm).
The model also worked decently well when loaded with TGI on a single GPPU nf4 quantized via [TimDettmers/bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
Will will get it touch with the TGI authors to find out why sharded 16-bit inference doesn't work as expected.

## Configuration Details

The "pretokenizer" utility used to tokenize the datamix is part of the Open-Assistant github repository and can be found here: [model/pretokenizer](https://github.com/LAION-AI/Open-Assistant/tree/main/model/pretokenizer).


### Stage 1 Pretokenizer Configuration

Entries of the dataset with assistant replies shorter than 25 tokens were excluded from training.

```
oasst_pre10_min25:
  datasets:
    - megacode2:
        fraction: 0.5
        val_split: 0.01
        max_val_set: 1000
    - orca-chat:
        val_split: 0.01
        max_val_set: 1000
    - dolly15k_multilingual:
        val_split: 0.05
        max_val_set: 300
    - oa_leet10k:
        val_split: 0.05
        max_val_set: 250
  output_dir: "output/oasst_pre10_min25"
  filename_prefix: "oasst_pre10"
  min_assistant_tokens: 25
```

Stage 1 dataset statistics:
```
# Stats for output/oasst_pre10_min25_llama2

## Stats for 'Subset of InstructionDataset (megacode2)' (466364 samples (50.0%))
-----------------
  Accepted: 398223/466364 (85.4%)
  Accepted tokens: 167676873
  Skipped: 68141 (14.6%)
  Min tokens per sample: 36
  Max tokens per sample: 11810
  Avg tokens per sample: 421.063
-----------------

## Stats for 'Subset of OrcaChat (orca-chat)' (325616 samples (100.0%))
-----------------
  Accepted: 325616/325616 (100.0%)
  Accepted tokens: 178307574
  Skipped: 0 (0.0%)
  Min tokens per sample: 105
  Max tokens per sample: 10408
  Avg tokens per sample: 547.601
-----------------

## Stats for 'Subset of Dolly15kMultilingual' (57020 samples (100.0%))
-----------------
  Accepted: 47494/57020 (83.3%)
  Accepted tokens: 13883177
  Skipped: 9526 (16.7%)
  Min tokens per sample: 34
  Max tokens per sample: 9172
  Avg tokens per sample: 292.314
-----------------

## Stats for 'Subset of InstructionDataset (oa_leet10k)' (22236 samples (100.0%))
-----------------
  Accepted: 22236/22236 (100.0%)
  Accepted tokens: 15905296
  Skipped: 0 (0.0%)
  Min tokens per sample: 168
  Max tokens per sample: 10588
  Avg tokens per sample: 715.295
-----------------

## Stats for 'total' (871236 samples (100.0%))
-----------------
  Accepted: 793569/871236 (91.1%)
  Accepted tokens: 375772920
  Skipped: 77667 (8.9%)
  Min tokens per sample: 34
  Max tokens per sample: 11810
  Avg tokens per sample: 473.523
-----------------
```


### Stage 2 Pretokenizer Configuration

```
oasst_top1:
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-07-23_oasst_ready.tar.gz
        top_k: 1
        val_split: 0.05
  output_dir: "output/oasst_top1_2023-07-23"
  filename_prefix: "oasst_top1"
```

Stage 2 dataset statistics:

```
# Stats for output/oasst_top1_2023-07-23_llama2

## Stats for 'ListDataset' (11441 samples (100.0%))
-----------------
  Accepted: 11441/11441 (100.0%)
  Accepted tokens: 5315368
  Skipped: 0 (0.0%)
  Min tokens per sample: 20
  Max tokens per sample: 5407
  Avg tokens per sample: 464.58945896337735
-----------------

## Stats for 'total' (11441 samples (100.0%))
-----------------
  Accepted: 11441/11441 (100.0%)
  Accepted tokens: 5315368
  Skipped: 0 (0.0%)
  Min tokens per sample: 20
  Max tokens per sample: 5407
  Avg tokens per sample: 464.58945896337735
-----------------
```


### Megatron Fine-Tuning Arguments for Stage 1 (Instruction Tuning):
```
--tensor_model_parallel_size 8
--pipeline_model_parallel_size 4
--load ./checkpoints/llama2-70b-tp8-pp4
--save ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
--tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10/logging
--data_path ./data/oasst_pre10_min25_llama2/oasst_sft10-train
--model_name llama2
--tokenizer_type SentencePieceTokenizer
--bf16
--global_batch_size 64
--micro_batch_size 2
--vocab_file=./llama2/Llama-2-7b/tokenizer.model
--use_rms_norm
--glu_activation swiglu
--no_tie_embed_logits
--vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
--layernorm_epsilon 1e-5
--use_flash_attn
--no_bias_gelu_fusion
--seq_length 4096
--max_position_embeddings 4096
--log_interval 1
--save_interval 500
--eval_interval 50
--eval_iters 10
--hidden_dropout 0.0
--position_embedding_type rotary
--no_bias_dropout_fusion
--use_checkpoint_args
--train_iters 12000
--attention_dropout 0.0
--adam_beta1 0.9
--adam_beta2 0.95
--adam_eps 1e-12
--lr_decay_style cosine
--lr_warmup_iters 100
--lr 1e-5
--min_lr 1e-6
--weight_decay 0.000001
--sequence_parallel
--recompute_granularity selective
--log_timers_to_tensorboard
--rope_scaling_factor 1.0
--wandb_logger
```

### Megatron Fine-Tuning Arguments for Stage 2 (OASST Polishing, LIMA Dropout):
```
--tensor_model_parallel_size 8
--pipeline_model_parallel_size 4
--load ./checkpoints/llama2-70b-tp8-pp4-oasst_pre10
--save ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10
--tensorboard_dir ./checkpoints/llama2-70b-tp8-pp4-oasst_sft10/logging
--data_path ./data/oasst_top1_2023-07-23_llama2/oasst_top1-train
--model_name llama2
--tokenizer_type SentencePieceTokenizer
--bf16
--global_batch_size 64
--micro_batch_size 2
--vocab_file=./llama2/Llama-2-7b/tokenizer.model
--use_rms_norm
--glu_activation swiglu
--no_tie_embed_logits
--vocab_extra_ids_list "\"<|im_start|>,<|im_end|>\""
--layernorm_epsilon 1e-5
--use_flash_attn
--no_bias_gelu_fusion
--seq_length 4096
--max_position_embeddings 4096
--log_interval 1
--save_interval 346
--eval_interval 50
--eval_iters 10
--hidden_dropout 0.25
--lima_dropout
--position_embedding_type rotary
--no_bias_dropout_fusion
--use_checkpoint_args
--train_iters 519
--attention_dropout 0.0
--adam_beta1 0.9
--adam_beta2 0.95
--adam_eps 1e-12
--lr_decay_style cosine
--lr_warmup_iters 100
--lr 1e-5
--min_lr 1e-6
--weight_decay 0.000001
--sequence_parallel
--recompute_granularity selective
--log_timers_to_tensorboard
--rope_scaling_factor 1.0
--finetune
--wandb_logger
```