File size: 3,993 Bytes
7163466
 
 
934bda9
 
 
 
 
39f6fc8
934bda9
 
234fb92
 
cf790b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abc4f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
---

**Note: internal model, not ready for use**

This is an intermediate model used as base-model for further pythia 12b SFT-8 experiments. 
It was trained on a wider set of instruction-tuning datasets for >12.5k steps with batch-size 128 and a context size of 2048.
The gpt4all dataset had "as a language model" *contamination* (>1.8k entries). We added filtering later, but this model (pre-v8) was trained on the raw unfildered gpt4all dataset.


- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/sytsyhrp
- [sampling report](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-pretrained%2F2023-05-05_OpenAssistant_pythia-12b-pre-v8-12_5k-steps_sampling_noprefix2.json)


Datasets: 

```
pretrain:
  num_train_epochs: 1
  weight_decay: 0.0
  use_custom_sampler: true
  sort_by_length: false
  datasets:
    - gpteacher_roleplay:
        val_split: 0.05
    - red_pajama:
        fraction: 0.25
        max_val_set: 1000
    - wizardlm_70k:
        val_split: 0.05
        max_val_set: 500
    - joke:
        val_split: 0.05
    - poem_instructions:
        val_split: 0.025
    - oa_stackexchange:
        val_split: 0.05
        fraction: 0.1
        max_val_set: 1000
    - tell_a_joke:
        val_split: 0.05
        max_val_set: 250
    - webgpt:
        val_split: 0.05
        max_val_set: 250
    - gpt4all:
        val_split: 0.01
        max_val_set: 1000
    - alpaca_gpt4:
        val_split: 0.025
        max_val_set: 250
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250
    - vicuna:
        max_val_set: 250
    - oig_file:
        source_url: https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl
        max_count: 10000
        min_length: 250
        val_split: 0.05
        max_val_set: 250
    - minimath:
        val_split: 0.05
    - humaneval_mbpp_codegen_qa:
        val_split: 0.05
    - humaneval_mbpp_testgen_qa:
        val_split: 0.05
    - grade_school_math_instructions:
        val_split: 0.05
    - recipes:
        val_split: 0.05
    - cmu_wiki_qa:
        val_split: 0.05
 - oa_wiki_qa_bart_10000row:
        val_split: 0.05
        max_val_set: 250
    - prosocial_dialogue:
        fraction: 0.1
        max_val_set: 250
    - explain_prosocial:
        fraction: 0.075
        max_val_set: 250
    - soda:
        fraction: 0.25
        max_val_set: 1000
    - oa_leet10k:
        val_split: 0.05
        max_val_set: 250
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
```


Pythia:
```
pythia-12b-pretrain:
  dtype: fp16
  log_dir: "pythia_log_12b"
  learning_rate: 6e-6
  model_name: EleutherAI/pythia-12b-deduped
  output_dir: pythia_model_12b
  weight_decay: 0.0
  max_length: 2048
  warmup_steps: 100
  gradient_checkpointing: true
  gradient_accumulation_steps: 4
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 4
  eval_steps: 251
  save_steps: 500
  num_train_epochs: 1
  save_total_limit: 2
  deepspeed_config: configs/zero_config_pretrain.json
```


Command used: `deepspeed trainer_sft.py --show_dataset_stats --configs defaults pythia-12b-pretrain pretrain --cache_dir .cache/ --output_dir .saved/pythia-12b-super-pretrain2 --deepspeed`
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenAssistant__pythia-12b-pre-v8-12.5k-steps)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 35.93   |
| ARC (25-shot)         | 41.47          |
| HellaSwag (10-shot)   | 68.8    |
| MMLU (5-shot)         | 26.58         |
| TruthfulQA (0-shot)   | 36.82   |
| Winogrande (5-shot)   | 65.27   |
| GSM8K (5-shot)        | 7.66        |
| DROP (3-shot)         | 4.89         |