File size: 3,993 Bytes
7163466 934bda9 39f6fc8 934bda9 234fb92 cf790b9 9abc4f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
---
**Note: internal model, not ready for use**
This is an intermediate model used as base-model for further pythia 12b SFT-8 experiments.
It was trained on a wider set of instruction-tuning datasets for >12.5k steps with batch-size 128 and a context size of 2048.
The gpt4all dataset had "as a language model" *contamination* (>1.8k entries). We added filtering later, but this model (pre-v8) was trained on the raw unfildered gpt4all dataset.
- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/sytsyhrp
- [sampling report](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-pretrained%2F2023-05-05_OpenAssistant_pythia-12b-pre-v8-12_5k-steps_sampling_noprefix2.json)
Datasets:
```
pretrain:
num_train_epochs: 1
weight_decay: 0.0
use_custom_sampler: true
sort_by_length: false
datasets:
- gpteacher_roleplay:
val_split: 0.05
- red_pajama:
fraction: 0.25
max_val_set: 1000
- wizardlm_70k:
val_split: 0.05
max_val_set: 500
- joke:
val_split: 0.05
- poem_instructions:
val_split: 0.025
- oa_stackexchange:
val_split: 0.05
fraction: 0.1
max_val_set: 1000
- tell_a_joke:
val_split: 0.05
max_val_set: 250
- webgpt:
val_split: 0.05
max_val_set: 250
- gpt4all:
val_split: 0.01
max_val_set: 1000
- alpaca_gpt4:
val_split: 0.025
max_val_set: 250
- code_alpaca:
val_split: 0.05
max_val_set: 250
- vicuna:
max_val_set: 250
- oig_file:
source_url: https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl
max_count: 10000
min_length: 250
val_split: 0.05
max_val_set: 250
- minimath:
val_split: 0.05
- humaneval_mbpp_codegen_qa:
val_split: 0.05
- humaneval_mbpp_testgen_qa:
val_split: 0.05
- grade_school_math_instructions:
val_split: 0.05
- recipes:
val_split: 0.05
- cmu_wiki_qa:
val_split: 0.05
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- prosocial_dialogue:
fraction: 0.1
max_val_set: 250
- explain_prosocial:
fraction: 0.075
max_val_set: 250
- soda:
fraction: 0.25
max_val_set: 1000
- oa_leet10k:
val_split: 0.05
max_val_set: 250
- dolly15k:
val_split: 0.05
max_val_set: 300
```
Pythia:
```
pythia-12b-pretrain:
dtype: fp16
log_dir: "pythia_log_12b"
learning_rate: 6e-6
model_name: EleutherAI/pythia-12b-deduped
output_dir: pythia_model_12b
weight_decay: 0.0
max_length: 2048
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 4
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 251
save_steps: 500
num_train_epochs: 1
save_total_limit: 2
deepspeed_config: configs/zero_config_pretrain.json
```
Command used: `deepspeed trainer_sft.py --show_dataset_stats --configs defaults pythia-12b-pretrain pretrain --cache_dir .cache/ --output_dir .saved/pythia-12b-super-pretrain2 --deepspeed`
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenAssistant__pythia-12b-pre-v8-12.5k-steps)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 35.93 |
| ARC (25-shot) | 41.47 |
| HellaSwag (10-shot) | 68.8 |
| MMLU (5-shot) | 26.58 |
| TruthfulQA (0-shot) | 36.82 |
| Winogrande (5-shot) | 65.27 |
| GSM8K (5-shot) | 7.66 |
| DROP (3-shot) | 4.89 |
|