|
|
|
|
|
|
|
|
|
|
|
import copy |
|
|
|
from transformers import LlamaConfig |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
from .configuration_intern_vit import InternVisionConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class InternVLConfig(PretrainedConfig): |
|
r""" |
|
[`InternVLConfig`] is the configuration class to store the configuration of a |
|
[`InternVLModel`]. It is used to instantiate a InternVLModel according to the specified |
|
arguments, defining the InternViT-6B and QLLaMA configs. Instantiating a configuration with |
|
the defaults will yield a similar configuration to that of the InternVL architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`InternVisionConfig`]. |
|
qllama_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`LLaMAConfig`]. |
|
clip_embed_dim (`int`, *optional*, defaults to 768): |
|
Size of the embeddings from the CLIP model. |
|
attn_pool_num_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads used in the attention pooling layers. |
|
num_query_token (`int`, *optional*, defaults to 96): |
|
Number of query tokens used in the transformer. |
|
label_smoothing (`float`, *optional*, defaults to 0.0): |
|
The amount of label smoothing to apply. |
|
cross_attention_frequency (`int`, *optional*, defaults to 2): |
|
The frequency of cross-attention layers in the model. |
|
use_backbone_lora (`int`, *optional*, defaults to 0): |
|
If non-zero, indicates the use of LoRA in the backbone of the model. |
|
use_qllama_lora (`int`, *optional*, defaults to 0): |
|
If non-zero, indicates the use of LoRA in the QLLaMA of the model. |
|
force_image_size (`int` or `None`, *optional*): |
|
If not None, forces the model to use this specific image size. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
kwargs (*optional*): |
|
Dictionary of additional keyword arguments. |
|
""" |
|
|
|
model_type = 'internvl' |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
qllama_config=None, |
|
clip_embed_dim=768, |
|
attn_pool_num_heads=16, |
|
num_query_token=96, |
|
label_smoothing=0.0, |
|
cross_attention_frequency=2, |
|
use_backbone_lora=0, |
|
use_qllama_lora=0, |
|
force_image_size=None, |
|
initializer_range=0.02, |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info('vision_config is None. initializing the InternVisionConfig with default values.') |
|
|
|
if qllama_config is None: |
|
qllama_config = {} |
|
logger.info( |
|
'qllama_config is None. Initializing the InternTextConfig config with default values (`LlamaConfig`).') |
|
|
|
self.vision_config = InternVisionConfig(**vision_config) |
|
self.qllama_config = LlamaConfig(**qllama_config) |
|
self.qllama_config.num_query_token = num_query_token |
|
self.qllama_config.cross_attention_frequency = cross_attention_frequency |
|
self.hidden_size = self.qllama_config.hidden_size |
|
|
|
self.clip_embed_dim = clip_embed_dim |
|
self.attn_pool_num_heads = attn_pool_num_heads |
|
self.num_query_token = num_query_token |
|
self.label_smoothing = label_smoothing |
|
self.use_backbone_lora = use_backbone_lora |
|
self.use_qllama_lora = use_qllama_lora |
|
self.force_image_size = force_image_size |
|
self.initializer_range = initializer_range |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = copy.deepcopy(self.__dict__) |
|
output['vision_config'] = self.vision_config.to_dict() |
|
output['qllama_config'] = self.qllama_config.to_dict() |
|
output['model_type'] = self.__class__.model_type |
|
return output |
|
|