File size: 21,606 Bytes
9cac2f2
 
6d27cbe
9cac2f2
2e42dea
5268958
2e42dea
6d27cbe
9b7841e
f3485d6
1129ac8
 
de2e232
973b6d6
 
 
de2e232
973b6d6
6d27cbe
973b6d6
6d27cbe
973b6d6
6d27cbe
973b6d6
 
 
 
 
6d27cbe
973b6d6
 
2217075
973b6d6
 
 
 
 
2e42dea
6d27cbe
85f05e5
3f3b4b8
 
 
 
 
 
 
 
 
 
 
2e42dea
 
 
6d27cbe
 
 
2e42dea
6d27cbe
2e42dea
6d27cbe
2e42dea
6d27cbe
2e42dea
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e42dea
6d27cbe
 
 
2e42dea
 
6d27cbe
2e42dea
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e42dea
6d27cbe
2e42dea
de2e232
2e42dea
 
 
 
 
6d27cbe
 
2e42dea
6d27cbe
 
2e42dea
2e21796
6d27cbe
 
 
 
 
2e42dea
6d27cbe
2e42dea
6d27cbe
 
 
 
170f44e
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
170f44e
6d27cbe
 
c5f6e4f
6d27cbe
170f44e
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e21796
6d27cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e42dea
 
21cbe95
 
 
2e42dea
 
 
 
 
 
 
 
 
 
 
 
bbccbf7
 
 
 
 
 
2e42dea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
---
license: mit
pipeline_tag: image-text-to-text
---

# InternVL-Chat-V1-2-Plus

[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[🆕 Blog\]](https://internvl.github.io/blog/)  [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)

[\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)  [\[📖 中文解读\]](https://zhuanlan.zhihu.com/p/706547971)  [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)

InternVL-Chat-V1-2-Plus uses the same model architecture as [InternVL-Chat-V1-2](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2), but the difference lies in the SFT dataset. InternVL-Chat-V1-2 only utilizes an SFT dataset with 1.2M samples, while **our plus version employs an SFT dataset with 12M samples**.

<p align="center">
  <img width="600" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png">
</p>

## Model Details

- **Model Type:** multimodal large language model (MLLM)

- **Model Stats:**

  - Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
  - Image size: 448 x 448 (256 tokens)
  - Params: 40B

- **Training Strategy:**

  - Pretraining Stage
    - Learnable Component: MLP
    - Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data. In this stage, we first load the pre-trained weights of [InternViT-6B-448px-V1-0](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) and connect it to Nous-Hermes-2-Yi-34B. After pre-training, the extracted ViT is published as [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
  - Supervised Finetuning Stage
    - Learnable Component: ViT + MLP + LLM
    - Data: 12 million SFT samples.

## Performance

\* Proprietary Model          † Training Set Observed

| name                        | image size | MMMU<br>(val) | MMMU<br>(test) | MathVista<br>(testmini) | MMB<br>(test) | MMB−CN<br>(test) | MMVP | MME      | ScienceQA<br>(image) | POPE | TextVQA<br>(val) | SEEDv1<br>(image) | VizWiz<br>(test) | GQA<br>(test) |
| --------------------------- | ---------- | ------------- | -------------- | ----------------------- | ------------- | ---------------- | ---- | -------- | -------------------- | ---- | ---------------- | ----------------- | ---------------- | ------------- |
| GPT-4V\*                    | unknown    | 56.8          | 55.7           | 49.9                    | 77.0          | 74.4             | 38.7 | 1409/517 | -                    | -    | 78.0             | 71.6              | -                | -             |
| Gemini Ultra\*              | unknown    | 59.4          | -              | 53.0                    | -             | -                | -    | -        | -                    | -    | 82.3             | -                 | -                | -             |
| Gemini Pro\*                | unknown    | 47.9          | -              | 45.2                    | 73.6          | 74.3             | 40.7 | 1497/437 | -                    | -    | 74.6             | 70.7              | -                | -             |
| Qwen−VL−Plus\*              | unknown    | 45.2          | 40.8           | 43.3                    | 67.0          | 70.7             | -    | 1681/502 | -                    | -    | 78.9             | 65.7              | -                | -             |
| Qwen−VL−Max\*               | unknown    | 51.4          | 46.8           | 51.0                    | 77.6          | 75.7             | -    | -        | -                    | -    | 79.5             | -                 | -                | -             |
|                             |            |               |                |                         |               |                  |      |          |                      |      |                  |                   |                  |               |
| LLaVA−NEXT−34B              | 672x672    | 51.1          | 44.7           | 46.5                    | 79.3          | 79.0             | -    | 1631/397 | 81.8                 | 87.7 | 69.5             | 75.9              | 63.8             | 67.1†         |
| InternVL−Chat<br>−V1-2      | 448x448    | 51.6          | 46.2           | 47.7                    | 82.2          | 81.2             | 56.7 | 1687/489 | 83.3                 | 88.0 | 72.5             | 75.6              | 60.0             | 64.0†         |
| InternVL−Chat<br>−V1-2−Plus | 448x448    | 50.3          | 45.6           | 59.9                    | 83.8          | 82.0             | 58.7 | 1625/553 | 98.1†                | 88.7 | 74.1†            | 76.4              | -                | 66.9†         |

- MMBench results are collected from the [leaderboard](https://mmbench.opencompass.org.cn/leaderboard).

Here, we have conducted only a simple performance comparison. For more detailed performance information and additional evaluation metrics, please refer to our performance summary table.

## Quick Start

We provide an example code to run InternVL-Chat-V1-2-Plus using `transformers`.

We also welcome you to experience the InternVL2 series models in our [online demo](https://internvl.opengvlab.com/).

> Please use transformers==4.37.2 to ensure the model works normally.

### Model Loading

#### 16-bit (bf16 / fp16)

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
```

#### BNB 8-bit Quantization

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval()
```

#### BNB 4-bit Quantization

> **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization.

#### Multiple GPUs

The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.

```python
import math
import torch
from transformers import AutoTokenizer, AutoModel

def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {'InternVL-Chat-V1-2': 60, 'InternVL-Chat-V1-2-Plus': 60}[model_name]
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
device_map = split_model('InternVL-Chat-V1-2-Plus')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map=device_map).eval()
```

### Inference with Transformers

#### Pure-text conversation

```python
from transformers import AutoTokenizer, AutoModel
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Single-image single-round conversation

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Single-image multi-round conversation

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Multi-image multi-round conversation, combined images

> **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Multi-image multi-round conversation, separate images

> **⚠️️ Warning:** Please note that for this model, we support multi-image chat in the interface, but the results are not very good due to the lack of training with multi-image data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

generation_config = dict(max_new_tokens=1024, do_sample=True)
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Batch inference, single image per sample

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from PIL import Image
import torch

path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

image_processor = CLIPImageProcessor.from_pretrained(path)
image1 = Image.open('./examples/image1.jpg').resize((448, 448))
pixel_values1 = image_processor(images=image1, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
image2 = Image.open('./examples/image2.jpg').resize((448, 448))
pixel_values2 = image_processor(images=image2, return_tensors='pt').pixel_values.to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

generation_config = dict(max_new_tokens=1024, do_sample=True)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}')
    print(f'Assistant: {response}')
```

#### Video multi-round conversation

> **⚠️️ Warning:** Please note that for this model, we support video chat in the interface, but the results are not very good due to the lack of training with video data.

```python
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import torch


def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    image_processor = CLIPImageProcessor.from_pretrained(path)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
        pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


path = "OpenGVLab/InternVL-Chat-V1-2-Plus"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=True)

video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')

question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
```

#### Streaming output

Besides this method, you can also use the following code to get streamed output.

```python
from transformers import TextIteratorStreamer
from threading import Thread

# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
    tokenizer=tokenizer, pixel_values=pixel_values, question=question,
    history=None, return_history=False, generation_config=generation_config,
))
thread.start()

# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
    if new_text == model.conv_template.sep:
        break
    generated_text += new_text
    print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
```

## License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
```