File size: 7,891 Bytes
9cac2f2
 
2e42dea
 
 
 
 
 
 
9cac2f2
2e42dea
41413c4
2e42dea
 
 
9b7841e
1e81641
9b7841e
2e42dea
 
 
 
 
 
 
 
 
 
 
aa21a1f
 
2e42dea
aa21a1f
 
 
2e42dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41413c4
2e42dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41413c4
2e42dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
---

# Model Card for InternVL-Chat-Chinese-V1.2-Plus

\[[Paper](https://arxiv.org/abs/2312.14238)\]  \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\]


InternVL-Chat-V1.2-Plus uses the same model architecture as [InternVL-Chat-V1.2](https://huggingface.co/OpenGVLab/InternVL-Chat-Chinese-V1-2), but the difference lies in the SFT dataset: while InternVL-Chat-V1.2 only utilizes an SFT dataset with 1.2M samples, our Plus version employs an SFT dataset with 12M samples.

<img width="600" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GIEKCvNc1Y5iMQqLv645p.png">

### Performance

\* Proprietary Model

| name               | image size | MMMU<br>(val) | MMMU<br>(test) | MathVista<br>(testmini) | MMB<br>(test) | MMB−CN<br>(test) | MMVP | MME      | ScienceQA<br>(image) | POPE | TextVQA<br>(val) | SEEDv1<br>(image) | VizWiz<br>(test) | GQA<br>(test) |
| ------------------ | ---------- | ------------- | -------------- | ----------------------- | ------------- | ---------------- | ---- | -------- | -------------------- | ---- | ------- | ----------------- | ---------------- | ------------- |
| GPT-4V\*           | unknown    | 56.8          | 55.7           | 49.9                    | 77.0          | 74.4             | 38.7 | 1409/517 | -                    | -    | 78.0    | 71.6              | -                | -             |
| Gemini Ultra\*     | unknown    | 59.4          | -              | 53.0                    | -             | -                | -    | -        | -                    | -    | 82.3    | -                 | -                | -             |
| Gemini Pro\*       | unknown    | 47.9          | -              | 45.2                    | 73.6          | 74.3             | 40.7 | 1497/437 | -                    | -    | 74.6    | 70.7              | -                | -             |
| Qwen−VL−Plus\*     | unknown    | 45.2          | 40.8           | 43.3                    | 67.0          | 70.7             | -    | 1681/502 | -                    | -    | 78.9    | 65.7              | -                | -             |
| Qwen−VL−Max\*      | unknown    | 51.4          | 46.8           | 51.0                    | 77.6          | 75.7             | -    | -        | -                    | -    | 79.5    | -                 | -                | -             |
|                    |            |               |                |                         |               |                  |      |          |                      |      |         |                   |                  |               |
| LLaVA−NEXT−34B     | 672x672    | 51.1          | 44.7           | 46.5                    | 79.3          | 79.0             | -    | 1631/397 | 81.8                 | 87.7 | 69.5    | 75.9              | 63.8             | 67.1          |
| InternVL−Chat−V1.2 | 448x448    | 51.6          | 46.2           | 47.7                    | 82.2          | 81.2             | 56.7 | 1672/509 | 83.3                 | 88.0 | 69.7    | 75.6              | 60.0             | 64.0          |
| InternVL−Chat−V1.2−Plus | 448x448    | 50.3     | 45.6           | 59.9                    | 83.8          | 82.0             | 58.7 | 1624/551 | 98.1\*               | 88.7 | 71.3\*  | 76.4              | -                | 66.9          |

- MMBench results are collected from the [leaderboard](https://mmbench.opencompass.org.cn/leaderboard).


## Model Details
- **Model Type:** vision large language model, multimodal chatbot
- **Model Stats:**
  - Architecture: [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) + MLP + [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)
  - Params: 40B
  - Image size: 448 x 448
  - Number of visual tokens: 256

- **Training Strategy:**
  - Pretraining Stage
    - Learnable Component: MLP
    - Data: Trained on 8192x4800=39.3M samples, including COYO, LAION, CC12M, CC3M, SBU, Wukong, GRIT, Objects365, OpenImages, and OCR data.
    - Note: In this stage, we load the pretrained weights of [InternViT-6B-448px-V1-2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). Moreover, in order to reduce the number of visual tokens, we use a pixel shuffle to reduce 1024 tokens to 256 tokens.
  - SFT Stage
    - Learnable Component: ViT + MLP + LLM
    - Data: 12 million SFT samples.


## Model Usage

We provide a minimum code example to run InternVL-Chat using only the `transformers` library.

You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.

Note: If you meet this error `ImportError: This modeling file requires the following packages that were not found in your environment: fastchat`, please run `pip install fschat`.


```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
from transformers import AutoTokenizer

path = "OpenGVLab/InternVL-Chat-Chinese-V1-2-Plus"
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
# model = AutoModel.from_pretrained(
#     path,
#     torch_dtype=torch.bfloat16,
#     low_cpu_mem_usage=True,
#     trust_remote_code=True,
#     device_map='auto').eval()

tokenizer = AutoTokenizer.from_pretrained(path)
image = Image.open('./examples/image2.jpg').convert('RGB')
image = image.resize((448, 448))
image_processor = CLIPImageProcessor.from_pretrained(path)

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

generation_config = dict(
    num_beams=1,
    max_new_tokens=512,
    do_sample=False,
)

question = "请详细描述图片"
response = model.chat(tokenizer, pixel_values, question, generation_config)
```


## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
```

## License

This project is released under the MIT license. Parts of this project contain code and models (e.g., LLaMA2) from other sources, which are subject to their respective licenses.

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

## Acknowledgement

InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!