cuierfei commited on
Commit
015995d
1 Parent(s): 312d2c0

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -567,7 +567,7 @@ To deploy InternVL2 as an API, please configure the chat template config first.
567
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
568
 
569
  ```shell
570
- lmdeploy serve api_server OpenGVLab/InternVL2-26B --model-name InternVL2-26B --backend turbomind --server-port 23333 --chat-template chat_template.json
571
  ```
572
 
573
  To use the OpenAI-style interface, you need to install OpenAI:
@@ -584,7 +584,7 @@ from openai import OpenAI
584
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
585
  model_name = client.models.list().data[0].id
586
  response = client.chat.completions.create(
587
- model="InternVL2-8B",
588
  messages=[{
589
  'role':
590
  'user',
@@ -614,7 +614,7 @@ TODO
614
 
615
  ## License
616
 
617
- This project is released under the MIT license, while InternLM is licensed under the Apache-2.0 license.
618
 
619
  ## Citation
620
 
@@ -863,7 +863,7 @@ print(sess.response.text)
863
  LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
864
 
865
  ```shell
866
- lmdeploy serve api_server OpenGVLab/InternVL2-26B --model-name InternVL2-26B --backend turbomind --server-port 23333 --chat-template chat_template.json
867
  ```
868
 
869
  为了使用OpenAI风格的API接口,您需要安装OpenAI:
@@ -880,7 +880,7 @@ from openai import OpenAI
880
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
881
  model_name = client.models.list().data[0].id
882
  response = client.chat.completions.create(
883
- model="InternVL2-26B",
884
  messages=[{
885
  'role':
886
  'user',
 
567
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
568
 
569
  ```shell
570
+ lmdeploy serve api_server OpenGVLab/InternVL2-26B --backend turbomind --server-port 23333 --chat-template chat_template.json
571
  ```
572
 
573
  To use the OpenAI-style interface, you need to install OpenAI:
 
584
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
585
  model_name = client.models.list().data[0].id
586
  response = client.chat.completions.create(
587
+ model=model_name,
588
  messages=[{
589
  'role':
590
  'user',
 
614
 
615
  ## License
616
 
617
+ This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
618
 
619
  ## Citation
620
 
 
863
  LMDeploy 的 `api_server` 使模型能够通过一个命令轻松打包成服务。提供的 RESTful API 与 OpenAI 的接口兼容。以下是服务启动的示例:
864
 
865
  ```shell
866
+ lmdeploy serve api_server OpenGVLab/InternVL2-26B --backend turbomind --server-port 23333 --chat-template chat_template.json
867
  ```
868
 
869
  为了使用OpenAI风格的API接口,您需要安装OpenAI:
 
880
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
881
  model_name = client.models.list().data[0].id
882
  response = client.chat.completions.create(
883
+ model=model_name,
884
  messages=[{
885
  'role':
886
  'user',