czczup commited on
Commit
8376215
·
verified ·
1 Parent(s): 81ae45a

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +39 -5
README.md CHANGED
@@ -76,6 +76,7 @@ We also welcome you to experience the InternVL2 series models in our [online dem
76
  > Please use transformers==4.37.2 to ensure the model works normally.
77
 
78
  ```python
 
79
  import numpy as np
80
  import torch
81
  import torchvision.transforms as T
@@ -163,6 +164,32 @@ def load_image(image_file, input_size=448, max_num=6):
163
  return pixel_values
164
 
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  path = 'OpenGVLab/InternVL2-26B'
167
  # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
168
  model = AutoModel.from_pretrained(
@@ -170,16 +197,15 @@ model = AutoModel.from_pretrained(
170
  torch_dtype=torch.bfloat16,
171
  low_cpu_mem_usage=True,
172
  trust_remote_code=True).eval().cuda()
173
- # Otherwise, you need to set device_map='auto' to use multiple GPUs for inference.
174
- # import os
175
- # os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
176
  # model = AutoModel.from_pretrained(
177
  # path,
178
  # torch_dtype=torch.bfloat16,
179
  # low_cpu_mem_usage=True,
180
  # trust_remote_code=True,
181
- # device_map='auto').eval()
182
-
183
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
184
  # set the max number of tiles in `max_num`
185
  pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
@@ -323,6 +349,10 @@ print(f'User: {question}')
323
  print(f'Assistant: {response}')
324
  ```
325
 
 
 
 
 
326
  ## Deployment
327
 
328
  ### LMDeploy
@@ -581,6 +611,10 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
581
 
582
  示例代码请[点击这里](#quick-start)。
583
 
 
 
 
 
584
  ## 部署
585
 
586
  ### LMDeploy
 
76
  > Please use transformers==4.37.2 to ensure the model works normally.
77
 
78
  ```python
79
+ import math
80
  import numpy as np
81
  import torch
82
  import torchvision.transforms as T
 
164
  return pixel_values
165
 
166
 
167
+ def split_model(model_name):
168
+ device_map = {}
169
+ world_size = torch.cuda.device_count()
170
+ num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
171
+ 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
172
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
173
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
174
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
175
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
176
+ layer_cnt = 0
177
+ for i, num_layer in enumerate(num_layers_per_gpu):
178
+ for j in range(num_layer):
179
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
180
+ layer_cnt += 1
181
+ device_map['vision_model'] = 0
182
+ device_map['mlp1'] = 0
183
+ device_map['language_model.model.tok_embeddings'] = 0
184
+ device_map['language_model.model.embed_tokens'] = 0
185
+ device_map['language_model.output'] = 0
186
+ device_map['language_model.model.norm'] = 0
187
+ device_map['language_model.lm_head'] = 0
188
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
189
+
190
+ return device_map
191
+
192
+
193
  path = 'OpenGVLab/InternVL2-26B'
194
  # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
195
  model = AutoModel.from_pretrained(
 
197
  torch_dtype=torch.bfloat16,
198
  low_cpu_mem_usage=True,
199
  trust_remote_code=True).eval().cuda()
200
+ # Otherwise, you need to set device_map to use multiple GPUs for inference.
201
+ # device_map = split_model('InternVL2-26B')
202
+ # print(device_map)
203
  # model = AutoModel.from_pretrained(
204
  # path,
205
  # torch_dtype=torch.bfloat16,
206
  # low_cpu_mem_usage=True,
207
  # trust_remote_code=True,
208
+ # device_map=device_map).eval()
 
209
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
210
  # set the max number of tiles in `max_num`
211
  pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
 
349
  print(f'Assistant: {response}')
350
  ```
351
 
352
+ ## Finetune
353
+
354
+ SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details.
355
+
356
  ## Deployment
357
 
358
  ### LMDeploy
 
611
 
612
  示例代码请[点击这里](#quick-start)。
613
 
614
+ ## 微调
615
+
616
+ 来自ModelScope社区的SWIFT已经支持对InternVL进行微调(图像/视频),详情请查看[此链接](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md)。
617
+
618
  ## 部署
619
 
620
  ### LMDeploy