Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -76,6 +76,7 @@ We also welcome you to experience the InternVL2 series models in our [online dem
|
|
76 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
77 |
|
78 |
```python
|
|
|
79 |
import numpy as np
|
80 |
import torch
|
81 |
import torchvision.transforms as T
|
@@ -163,6 +164,32 @@ def load_image(image_file, input_size=448, max_num=6):
|
|
163 |
return pixel_values
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
path = 'OpenGVLab/InternVL2-26B'
|
167 |
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
|
168 |
model = AutoModel.from_pretrained(
|
@@ -170,16 +197,15 @@ model = AutoModel.from_pretrained(
|
|
170 |
torch_dtype=torch.bfloat16,
|
171 |
low_cpu_mem_usage=True,
|
172 |
trust_remote_code=True).eval().cuda()
|
173 |
-
# Otherwise, you need to set device_map
|
174 |
-
#
|
175 |
-
#
|
176 |
# model = AutoModel.from_pretrained(
|
177 |
# path,
|
178 |
# torch_dtype=torch.bfloat16,
|
179 |
# low_cpu_mem_usage=True,
|
180 |
# trust_remote_code=True,
|
181 |
-
# device_map=
|
182 |
-
|
183 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
184 |
# set the max number of tiles in `max_num`
|
185 |
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
@@ -323,6 +349,10 @@ print(f'User: {question}')
|
|
323 |
print(f'Assistant: {response}')
|
324 |
```
|
325 |
|
|
|
|
|
|
|
|
|
326 |
## Deployment
|
327 |
|
328 |
### LMDeploy
|
@@ -581,6 +611,10 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
581 |
|
582 |
示例代码请[点击这里](#quick-start)。
|
583 |
|
|
|
|
|
|
|
|
|
584 |
## 部署
|
585 |
|
586 |
### LMDeploy
|
|
|
76 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
77 |
|
78 |
```python
|
79 |
+
import math
|
80 |
import numpy as np
|
81 |
import torch
|
82 |
import torchvision.transforms as T
|
|
|
164 |
return pixel_values
|
165 |
|
166 |
|
167 |
+
def split_model(model_name):
|
168 |
+
device_map = {}
|
169 |
+
world_size = torch.cuda.device_count()
|
170 |
+
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
|
171 |
+
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
|
172 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
173 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
174 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
175 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
176 |
+
layer_cnt = 0
|
177 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
178 |
+
for j in range(num_layer):
|
179 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
180 |
+
layer_cnt += 1
|
181 |
+
device_map['vision_model'] = 0
|
182 |
+
device_map['mlp1'] = 0
|
183 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
184 |
+
device_map['language_model.model.embed_tokens'] = 0
|
185 |
+
device_map['language_model.output'] = 0
|
186 |
+
device_map['language_model.model.norm'] = 0
|
187 |
+
device_map['language_model.lm_head'] = 0
|
188 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
189 |
+
|
190 |
+
return device_map
|
191 |
+
|
192 |
+
|
193 |
path = 'OpenGVLab/InternVL2-26B'
|
194 |
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
|
195 |
model = AutoModel.from_pretrained(
|
|
|
197 |
torch_dtype=torch.bfloat16,
|
198 |
low_cpu_mem_usage=True,
|
199 |
trust_remote_code=True).eval().cuda()
|
200 |
+
# Otherwise, you need to set device_map to use multiple GPUs for inference.
|
201 |
+
# device_map = split_model('InternVL2-26B')
|
202 |
+
# print(device_map)
|
203 |
# model = AutoModel.from_pretrained(
|
204 |
# path,
|
205 |
# torch_dtype=torch.bfloat16,
|
206 |
# low_cpu_mem_usage=True,
|
207 |
# trust_remote_code=True,
|
208 |
+
# device_map=device_map).eval()
|
|
|
209 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
210 |
# set the max number of tiles in `max_num`
|
211 |
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
|
|
349 |
print(f'Assistant: {response}')
|
350 |
```
|
351 |
|
352 |
+
## Finetune
|
353 |
+
|
354 |
+
SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details.
|
355 |
+
|
356 |
## Deployment
|
357 |
|
358 |
### LMDeploy
|
|
|
611 |
|
612 |
示例代码请[点击这里](#quick-start)。
|
613 |
|
614 |
+
## 微调
|
615 |
+
|
616 |
+
来自ModelScope社区的SWIFT已经支持对InternVL进行微调(图像/视频),详情请查看[此链接](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md)。
|
617 |
+
|
618 |
## 部署
|
619 |
|
620 |
### LMDeploy
|