unsubscribe commited on
Commit
673d516
·
verified ·
1 Parent(s): 351a98b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -3
README.md CHANGED
@@ -1,3 +1,80 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ <div align="center">
5
+ <img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
6
+ </div>
7
+
8
+ # INT4 Weight-only Quantization and Deployment (W4A16)
9
+
10
+ LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
11
+
12
+ LMDeploy supports the following NVIDIA GPU for W4A16 inference:
13
+
14
+ - Turing(sm75): 20 series, T4
15
+
16
+ - Ampere(sm80,sm86): 30 series, A10, A16, A30, A100
17
+
18
+ - Ada Lovelace(sm90): 40 series
19
+
20
+ Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.
21
+
22
+ ```shell
23
+ pip install lmdeploy[all]
24
+ ```
25
+
26
+ This article comprises the following sections:
27
+
28
+ <!-- toc -->
29
+
30
+ - [Inference](#inference)
31
+ - [Evaluation](#evaluation)
32
+ - [Service](#service)
33
+
34
+ <!-- tocstop -->
35
+ ## Inference
36
+ For lmdeploy v0.5.0, please configure the chat template config first. Create the following JSON file `chat_template.json`.
37
+ ```json
38
+ {
39
+ "model_name":"internlm2",
40
+ "meta_instruction":"你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。",
41
+ "stop_words":["<|im_start|>", "<|im_end|>"]
42
+ }
43
+ ```
44
+
45
+ Trying the following codes, you can perform the batched offline inference with the quantized model:
46
+
47
+ ```python
48
+ from lmdeploy import pipeline
49
+ from lmdeploy.model import ChatTemplateConfig
50
+ from lmdeploy.vl import load_image
51
+
52
+ model = 'OpenGVLab/InternVL2-2B-AWQ'
53
+ chat_template_config = ChatTemplateConfig.from_json('chat_template.json')
54
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
55
+ pipe = pipeline(model, chat_template_config=chat_template_config, log_level='INFO')
56
+ response = pipe(('describe this image', image))
57
+ print(response)
58
+ ```
59
+
60
+ For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
61
+
62
+ ## Evaluation
63
+
64
+ Please overview [this guide](https://opencompass.readthedocs.io/en/latest/advanced_guides/evaluation_turbomind.html) about model evaluation with LMDeploy.
65
+
66
+ ## Service
67
+
68
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
69
+
70
+ ```shell
71
+ lmdeploy serve api_server OpenGVLab/InternVL-Chat-V1-5-AWQ --backend turbomind --model-format awq --chat-template chat_template.json
72
+ ```
73
+
74
+ The default port of `api_server` is `23333`. After the server is launched, you can communicate with server on terminal through `api_client`:
75
+
76
+ ```shell
77
+ lmdeploy serve api_client http://0.0.0.0:23333
78
+ ```
79
+
80
+ You can overview and try out `api_server` APIs online by swagger UI at `http://0.0.0.0:23333`, or you can also read the API specification from [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/serving/restful_api.md).