czczup commited on
Commit
ea73820
·
verified ·
1 Parent(s): 701bc3f

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. modeling_intern_vit.py +6 -12
README.md CHANGED
@@ -30,7 +30,7 @@ LMDeploy supports the following NVIDIA GPU for W4A16 inference:
30
  Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.
31
 
32
  ```shell
33
- pip install lmdeploy
34
  ```
35
 
36
  This article comprises the following sections:
 
30
  Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.
31
 
32
  ```shell
33
+ pip install lmdeploy==0.5.3
34
  ```
35
 
36
  This article comprises the following sections:
modeling_intern_vit.py CHANGED
@@ -20,18 +20,12 @@ from transformers.utils import logging
20
  from .configuration_intern_vit import InternVisionConfig
21
 
22
  try:
23
- try: # v1
24
- from flash_attn.flash_attn_interface import \
25
- flash_attn_unpadded_qkvpacked_func
26
- except: # v2
27
- from flash_attn.flash_attn_interface import \
28
- flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
-
30
  from flash_attn.bert_padding import pad_input, unpad_input
31
-
 
32
  has_flash_attn = True
33
  except:
34
- print('FlashAttention is not installed.')
35
  has_flash_attn = False
36
 
37
  logger = logging.get_logger(__name__)
@@ -74,7 +68,7 @@ class FlashAttention(nn.Module):
74
  max_s = seqlen
75
  cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
  device=qkv.device)
77
- output = flash_attn_unpadded_qkvpacked_func(
78
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
  softmax_scale=self.softmax_scale, causal=causal
80
  )
@@ -84,7 +78,7 @@ class FlashAttention(nn.Module):
84
  x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
  x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
  x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
- output_unpad = flash_attn_unpadded_qkvpacked_func(
88
  x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
  softmax_scale=self.softmax_scale, causal=causal
90
  )
@@ -93,7 +87,7 @@ class FlashAttention(nn.Module):
93
  'b s (h d) -> b s h d', h=nheads)
94
  else:
95
  assert max_s is not None
96
- output = flash_attn_unpadded_qkvpacked_func(
97
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
  softmax_scale=self.softmax_scale, causal=causal
99
  )
 
20
  from .configuration_intern_vit import InternVisionConfig
21
 
22
  try:
 
 
 
 
 
 
 
23
  from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
  has_flash_attn = True
27
  except:
28
+ print('FlashAttention2 is not installed.')
29
  has_flash_attn = False
30
 
31
  logger = logging.get_logger(__name__)
 
68
  max_s = seqlen
69
  cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
  device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
  softmax_scale=self.softmax_scale, causal=causal
74
  )
 
78
  x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
  x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
  x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
  x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
  softmax_scale=self.softmax_scale, causal=causal
84
  )
 
87
  'b s (h d) -> b s h d', h=nheads)
88
  else:
89
  assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
  softmax_scale=self.softmax_scale, causal=causal
93
  )