File size: 15,309 Bytes
3567964
 
 
 
ef7a32d
94d38c0
 
3567964
 
 
 
94d38c0
3567964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c446b09
 
 
 
3567964
 
 
 
ef7a32d
f71474a
3567964
 
 
 
 
 
 
 
 
 
 
 
 
ef7a32d
f71474a
3567964
 
 
 
 
 
 
 
 
 
 
 
ef7a32d
f71474a
3567964
 
 
 
94d38c0
 
 
 
 
 
 
 
 
 
 
 
3567964
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"""
Conversation prompt templates.

We kindly request that you import fastchat instead of copying this file if you wish to use it.
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.

Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
"""

import dataclasses
from enum import IntEnum, auto
from typing import Dict, List, Tuple, Union


class SeparatorStyle(IntEnum):
    """Separator styles."""

    ADD_COLON_SINGLE = auto()
    ADD_COLON_TWO = auto()
    ADD_COLON_SPACE_SINGLE = auto()
    NO_COLON_SINGLE = auto()
    NO_COLON_TWO = auto()
    ADD_NEW_LINE_SINGLE = auto()
    LLAMA2 = auto()
    CHATGLM = auto()
    CHATML = auto()
    CHATINTERN = auto()
    DOLLY = auto()
    RWKV = auto()
    PHOENIX = auto()
    ROBIN = auto()
    FALCON_CHAT = auto()
    CHATGLM3 = auto()
    INTERNVL_ZH = auto()
    MPT = auto()


@dataclasses.dataclass
class Conversation:
    """A class that manages prompt templates and keeps all conversation history."""

    # The name of this template
    name: str
    # The template of the system prompt
    system_template: str = '{system_message}'
    # The system message
    system_message: str = ''
    # The names of two roles
    roles: Tuple[str] = ('USER', 'ASSISTANT')
    # All messages. Each item is (role, message).
    messages: List[List[str]] = ()
    # The number of few shot examples
    offset: int = 0
    # The separator style and configurations
    sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
    sep: str = '\n'
    sep2: str = None
    # Stop criteria (the default one is EOS token)
    stop_str: Union[str, List[str]] = None
    # Stops generation if meeting any token in this list
    stop_token_ids: List[int] = None

    def get_prompt(self) -> str:
        """Get the prompt for generation."""
        system_prompt = self.system_template.format(system_message=self.system_message)
        if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ': ' + message + self.sep
                else:
                    ret += role + ':'
            return ret
        elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
            seps = [self.sep, self.sep2]
            ret = system_prompt + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ': ' + message + seps[i % 2]
                else:
                    ret += role + ':'
            return ret
        elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ': ' + message + self.sep
                else:
                    ret += role + ': '  # must be end with a space
            return ret
        elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
            ret = '' if system_prompt == '' else system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + '\n' + message + self.sep
                else:
                    ret += role + '\n'
            return ret
        elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
            ret = system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + message + self.sep
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + message + seps[i % 2]
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.RWKV:
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += (
                        role
                        + ': '
                        + message.replace('\r\n', '\n').replace('\n\n', '\n')
                    )
                    ret += '\n\n'
                else:
                    ret += role + ':'
            return ret
        elif self.sep_style == SeparatorStyle.LLAMA2:
            seps = [self.sep, self.sep2]
            if self.system_message:
                ret = system_prompt
            else:
                ret = '[INST] '
            for i, (role, message) in enumerate(self.messages):
                tag = self.roles[i % 2]
                if message:
                    if i == 0:
                        ret += message + ' '
                    else:
                        ret += tag + ' ' + message + seps[i % 2]
                else:
                    ret += tag
            return ret
        elif self.sep_style == SeparatorStyle.CHATGLM:
            # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
            # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
            round_add_n = 1 if self.name == 'chatglm2' else 0
            if system_prompt:
                ret = system_prompt + self.sep
            else:
                ret = ''

            for i, (role, message) in enumerate(self.messages):
                if i % 2 == 0:
                    ret += f'[Round {i//2 + round_add_n}]{self.sep}'

                if message:
                    ret += f'{role}{message}{self.sep}'
                else:
                    ret += f'{role}:'
            return ret
        elif self.sep_style == SeparatorStyle.CHATML:
            ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
            for role, message in self.messages:
                if message:
                    ret += role + '\n' + message + self.sep + '\n'
                else:
                    ret += role + '\n'
            return ret
        elif self.sep_style == SeparatorStyle.CHATGLM3:
            ret = ''
            if self.system_message:
                ret += system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + '\n' + ' ' + message
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.CHATINTERN:
            # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                # if i % 2 == 0:
                #     ret += "<s>"
                if message:
                    ret += role + ':' + message + seps[i % 2] + '\n'
                else:
                    ret += role + ':'
            return ret
        elif self.sep_style == SeparatorStyle.DOLLY:
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ':\n' + message + seps[i % 2]
                    if i % 2 == 1:
                        ret += '\n\n'
                else:
                    ret += role + ':\n'
            return ret
        elif self.sep_style == SeparatorStyle.PHOENIX:
            ret = system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + ': ' + '<s>' + message + '</s>'
                else:
                    ret += role + ': ' + '<s>'
            return ret
        elif self.sep_style == SeparatorStyle.ROBIN:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ':\n' + message + self.sep
                else:
                    ret += role + ':\n'
            return ret
        elif self.sep_style == SeparatorStyle.FALCON_CHAT:
            ret = ''
            if self.system_message:
                ret += system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ': ' + message + self.sep
                else:
                    ret += role + ':'

            return ret
        elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
            seps = [self.sep, self.sep2]
            ret = self.system_message + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ': ' + message + seps[i % 2]
                else:
                    ret += role + ':'
            return ret
        elif self.sep_style == SeparatorStyle.MPT:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
            return ret
        else:
            raise ValueError(f'Invalid style: {self.sep_style}')

    def set_system_message(self, system_message: str):
        """Set the system message."""
        self.system_message = system_message

    def append_message(self, role: str, message: str):
        """Append a new message."""
        self.messages.append([role, message])

    def update_last_message(self, message: str):
        """Update the last output.

        The last message is typically set to be None when constructing the prompt,
        so we need to update it in-place after getting the response from a model.
        """
        self.messages[-1][1] = message

    def to_gradio_chatbot(self):
        """Convert the conversation to gradio chatbot format."""
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset :]):
            if i % 2 == 0:
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def to_openai_api_messages(self):
        """Convert the conversation to OpenAI chat completion format."""
        ret = [{'role': 'system', 'content': self.system_message}]

        for i, (_, msg) in enumerate(self.messages[self.offset :]):
            if i % 2 == 0:
                ret.append({'role': 'user', 'content': msg})
            else:
                if msg is not None:
                    ret.append({'role': 'assistant', 'content': msg})
        return ret

    def copy(self):
        return Conversation(
            name=self.name,
            system_template=self.system_template,
            system_message=self.system_message,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            stop_str=self.stop_str,
            stop_token_ids=self.stop_token_ids,
        )

    def dict(self):
        return {
            'template_name': self.name,
            'system_message': self.system_message,
            'roles': self.roles,
            'messages': self.messages,
            'offset': self.offset,
        }


# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}


def register_conv_template(template: Conversation, override: bool = False):
    """Register a new conversation template."""
    if not override:
        assert (
            template.name not in conv_templates
        ), f'{template.name} has been registered.'

    conv_templates[template.name] = template


def get_conv_template(name: str) -> Conversation:
    """Get a conversation template."""
    return conv_templates[name].copy()


# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
# Therefore, they are completely equivalent during inference.
register_conv_template(
    Conversation(
        name='Hermes-2',
        system_template='<|im_start|>system\n{system_message}',
        # note: The new system prompt was not used here to avoid changes in benchmark performance.
        # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
        system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
        roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
        sep_style=SeparatorStyle.MPT,
        sep='<|im_end|>',
        stop_str='<|endoftext|>',
    )
)


register_conv_template(
    Conversation(
        name='internlm2-chat',
        system_template='<|im_start|>system\n{system_message}',
        # note: The new system prompt was not used here to avoid changes in benchmark performance.
        # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
        system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
        roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
        sep_style=SeparatorStyle.MPT,
        sep='<|im_end|>',
    )
)


register_conv_template(
    Conversation(
        name='phi3-chat',
        system_template='<|system|>\n{system_message}',
        # note: The new system prompt was not used here to avoid changes in benchmark performance.
        # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
        system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
        roles=('<|user|>\n', '<|assistant|>\n'),
        sep_style=SeparatorStyle.MPT,
        sep='<|end|>',
    )
)


register_conv_template(
    Conversation(
        name='internvl2_5',
        system_template='<|im_start|>system\n{system_message}',
        system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
        roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
        sep_style=SeparatorStyle.MPT,
        sep='<|im_end|>\n',
    )
)