czczup commited on
Commit
b6d954f
Β·
verified Β·
1 Parent(s): 5a182e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +210 -256
README.md CHANGED
@@ -10,240 +10,173 @@ language:
10
  - multilingual
11
  tags:
12
  - internvl
13
- - vision
14
- - ocr
15
- - multi-image
16
- - video
17
  - custom_code
18
  ---
19
 
20
  # InternVL2_5-38B
21
 
22
- [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[πŸ†• Blog\]](https://internvl.github.io/blog/)
23
- [\[πŸ“œ InternVL 2.5 Report\]]()
24
- [\[πŸ“œ InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[πŸ“œ InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
25
- [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[πŸš€ Quick Start\]](#quick-start) [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)
26
 
27
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/c1Vt2ZUFgeD3CjqlzTBTZ.png)
 
 
 
 
28
 
29
  ## Introduction
30
 
31
- We are excited to introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
32
-
33
- Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to achieve over **70%** on the **MMMU benchmark**. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. This repository contains the instruction-tuned **InternVL2_5-38B** model.
34
-
35
- We delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. For more details, please refer to our [blog](), [tech report]() and [GitHub](https://github.com/OpenGVLab/InternVL).
36
-
37
- | Model Name | Vision Part | Language Part | HF Link |
38
- | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: |
39
- | InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
40
- | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
41
- | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
42
- | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
43
- | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
44
- | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
45
- | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
46
-
47
- ## Model Details
48
-
49
- InternVL 2.5 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2_5-38B consists of [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5), an MLP projector, and [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct).
50
-
51
- ## Performance
52
-
53
- ### Image Benchmarks
54
-
55
- | Benchmark | InternVL2.5-26B | Cambrian-34B | VILA-1.5-40B | InternVL2.5-38B |
56
- |----------------------------|-----------------|--------------|--------------|-----------------|
57
- | MMMU (val) | 60.0 | 49.7 | 55.1 | 63.9 |
58
- | MMMU (test) | 51.8 | - | 46.9 | 57.6 |
59
- | MMMU-PRO (overall) | 37.1 | - | 25.0 | 46.0 |
60
- | MathVista (mini) | 67.7 | 53.2 | 49.5 | 71.9 |
61
- | MathVision (mini) | 28.0 | - | - | 32.2 |
62
- | MathVision (full) | 23.1 | - | - | 31.8 |
63
- | MathVerse (mini) | 40.1 | - | - | 49.4 |
64
- | Olympiad Bench | 8.8 | - | - | 12.1 |
65
- | AI2D (w / wo M) | 86.4 / 94.4 | 79.5 / - | 69.9 / - | 87.6 / 95.1 |
66
- | ChartQA (test avg.) | 87.2 | 75.6 | 67.2 | 88.2 |
67
- | TextVQA (val) | 82.4 | 76.7 | 73.6 | 82.7 |
68
- | DocVQA (test) | 94.0 | 75.5 | - | 95.3 |
69
- | InfoVQA (test) | 79.8 | 46.0 | - | 83.6 |
70
- | OCR-Bench | 852 | 600 | 460 | 842 |
71
- | SEED-2 Plus | 70.8 | - | - | 71.2 |
72
- | CharXiv (RQ / DQ) | 35.9 / 73.5 | 27.3 / 59.7 | 24.0 / 38.7 | 42.4 / 79.6 |
73
- | VCR-EN-Easy (EM / Jaccard) | 94.4 / 98.0 | 79.7 / 89.3 | - | 94.7 / 98.2 |
74
- | BLINK (val) | 61.8 | - | - | 63.2 |
75
- | Mantis Eval | 75.6 | - | - | 78.3 |
76
- | MMIU | 49.4 | - | - | 55.3 |
77
- | Muir Bench | 61.1 | - | - | 62.7 |
78
- | MMT (val) | 66.9 | - | - | 70.0 |
79
- | MIRB (avg.) | 55.7 | - | - | 61.2 |
80
- | RealWorld QA | 74.5 | 67.8 | - | 73.5 |
81
- | MME-RW (EN) | 61.8 | 44.1 | - | 64.0 |
82
- | WildVision (win rate) | 65.2 | - | - | 66.4 |
83
- | R-Bench | 72.9 | - | - | 72.1 |
84
- | MME (sum) | 2373.3 | - | - | 2455.8 |
85
- | MMB (EN / CN) | 85.4 / 85.5 | 80.4 / 79.2 | - | 86.5 / 86.3 |
86
- | MMBv1.1 (EN) | 84.2 | 78.3 | - | 85.5 |
87
- | MMVet (turbo) | 65.0 | 53.2 | - | 68.8 |
88
- | MMVetv2 (0613) | 60.8 | - | - | 62.1 |
89
- | MMStar | 66.5 | 54.2 | - | 67.9 |
90
- | HallBench (avg.) | 55.0 | 41.6 | - | 56.8 |
91
- | MMHal (score) | 3.70 | - | - | 3.71 |
92
- | CRPE (relation) | 79.1 | - | - | 78.3 |
93
- | POPE (avg.) | 90.6 | - | - | 90.7 |
94
-
95
-
96
-
97
-
98
- ### Video Benchmarks
99
-
100
- | Model Name | Video-MME (wo / w sub) | MVBench | MMBench-Video (val) | MLVU (M-Avg) | LongVideoBench (val total) | CG-Bench v1.1 (long / clue acc.) |
101
- |---------------------------------------------|-------------|------|-------|-------|------|-------------|
102
- | **InternVL2.5-1B** | 50.3 / 52.3 | 64.3 | 1.36 | 57.3 | 47.9 | - |
103
- | Qwen2-VL-2B | 55.6 / 60.4 | 63.2 | - | - | - | - |
104
- | **InternVL2.5-2B** | 51.9 / 54.1 | 68.8 | 1.44 | 61.4 | 52.0 | - |
105
- | **InternVL2.5-4B** | 62.3 / 63.6 | 71.6 | 1.73 | 68.3 | 55.2 | - |
106
- | VideoChat2-HD | 45.3 / 55.7 | 62.3 | 1.22 | 47.9 | - | - |
107
- | MiniCPM-V-2.6 | 60.9 / 63.6 | - | 1.70 | - | 54.9 | - |
108
- | LLaVA-OneVision-7B | 58.2 / - | 56.7 | - | - | - | - |
109
- | Qwen2-VL-7B | 63.3 / 69.0 | 67.0 | 1.44 | - | 55.6 | - |
110
- | **InternVL2.5-8B** | 64.2 / 66.9 | 72.0 | 1.68 | 68.9 | 60.0 | - |
111
- | **InternVL2.5-26B** | 66.9 / 69.2 | 75.2 | 1.86 | 72.3 | 59.9 | - |
112
- | Oryx-1.5-32B | 67.3 / 74.9 | 70.1 | 1.52 | 72.3 | - | - |
113
- | VILA-1.5-40B | 60.1 / 61.1 | - | 1.61 | 56.7 | - | - |
114
- | **InternVL2.5-38B** | 70.7 / 73.1 | 74.4 | 1.82 | 75.3 | 63.3 | - |
115
- | GPT-4V/4T | 59.9 / 63.3 | 43.7 | 1.53 | 49.2 | 59.1 | - |
116
- | GPT-4o-20240513 | 71.9 / 77.2 | - | 1.63 | 64.6 | 66.7 | - |
117
- | GPT-4o-20240806 | - | - | 1.87 | - | - | - |
118
- | Gemini-1.5-Pro | 75.0 / 81.3 | - | 1.30 | - | 64.0 | - |
119
- | VideoLLaMA2-72B | 61.4 / 63.1 | 62.0 | - | - | - | - |
120
- | LLaVA-OneVision-72B | 66.2 / 69.5 | 59.4 | - | 66.4 | 61.3 | - |
121
- | Qwen2-VL-72B | 71.2 / 77.8 | 73.6 | 1.70 | - | - | 41.3 / 56.2 |
122
- | InternVL2-Llama3-76B | 64.7 / 67.8 | 69.6 | 1.71 | 69.9 | 61.1 | - |
123
- | **InternVL2.5-78B** | 72.1 / 74.0 | 76.4 | 1.97 | 75.7 | 63.6 | 42.2 / 58.5 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  ### Multimodal Multilingual Understanding
126
- <table style="width: 100%; font-size: 8px; border-collapse: collapse; text-align: center;">
127
- <thead>
128
- <tr>
129
- <th rowspan="2">Model Name</th>
130
- <th colspan="6">MMMB</th>
131
- <th colspan="6">Multilingual MMBench</th>
132
- <th>MTVQA</th>
133
- </tr>
134
- <tr>
135
- <th>en</th>
136
- <th>zh</th>
137
- <th>pt</th>
138
- <th>ar</th>
139
- <th>tr</th>
140
- <th>ru</th>
141
- <th>en</th>
142
- <th>zh</th>
143
- <th>pt</th>
144
- <th>ar</th>
145
- <th>tr</th>
146
- <th>ru</th>
147
- <th>(avg)</th>
148
- </tr>
149
- </thead>
150
- <tbody>
151
- <tr>
152
- <td>InternVL-Chat-V1.5</td>
153
- <td>82.6</td>
154
- <td>80.8</td>
155
- <td>76.3</td>
156
- <td>65.2</td>
157
- <td>68.6</td>
158
- <td>74.0</td>
159
- <td>81.1</td>
160
- <td>80.2</td>
161
- <td>76.9</td>
162
- <td>56.2</td>
163
- <td>66.7</td>
164
- <td>71.0</td>
165
- <td>20.5</td>
166
- </tr>
167
- <tr>
168
- <td>InternVL2-26B</td>
169
- <td>83.8</td>
170
- <td>81.7</td>
171
- <td>78.0</td>
172
- <td>68.8</td>
173
- <td>69.3</td>
174
- <td>76.3</td>
175
- <td>82.7</td>
176
- <td>81.8</td>
177
- <td>77.8</td>
178
- <td>61.9</td>
179
- <td>69.6</td>
180
- <td>74.4</td>
181
- <td>17.7</td>
182
- </tr>
183
- <tr>
184
- <td>InternVL2.5-26B</td>
185
- <td>86.2</td>
186
- <td>83.8</td>
187
- <td>81.6</td>
188
- <td>73.3</td>
189
- <td>73.7</td>
190
- <td>82.8</td>
191
- <td>86.1</td>
192
- <td>85.5</td>
193
- <td>80.7</td>
194
- <td>67.5</td>
195
- <td>75.0</td>
196
- <td>79.6</td>
197
- <td>28.5</td>
198
- </tr>
199
- <tr>
200
- <td>InternVL2-40B</td>
201
- <td>85.3</td>
202
- <td>84.1</td>
203
- <td>81.1</td>
204
- <td>70.3</td>
205
- <td>74.2</td>
206
- <td>81.4</td>
207
- <td>86.2</td>
208
- <td>85.8</td>
209
- <td>82.8</td>
210
- <td>64.0</td>
211
- <td>74.2</td>
212
- <td>81.8</td>
213
- <td>20.6</td>
214
- </tr>
215
- <tr>
216
- <td>InternVL2.5-38B</td>
217
- <td>86.4</td>
218
- <td>85.1</td>
219
- <td>84.1</td>
220
- <td>84.3</td>
221
- <td>82.8</td>
222
- <td>84.9</td>
223
- <td>87.5</td>
224
- <td>88.6</td>
225
- <td>85.3</td>
226
- <td>84.5</td>
227
- <td>84.0</td>
228
- <td>85.9</td>
229
- <td>31.7</td>
230
- </tr>
231
- </tbody>
232
- </table>
233
-
234
-
235
-
236
- ### Invitation to Evaluate InternVL
237
-
238
- We welcome MLLM benchmark developers to assess our InternVL series models. If you need to add your evaluation results here, please contact me at [[email protected]](mailto:[email protected]).
239
 
240
- ## Quick Start
 
 
241
 
242
- We provide an example code to run InternVL2_5-38B using `transformers`.
243
 
244
- We also welcome you to experience the InternVL series models in our [online demo](https://internvl.opengvlab.com/).
245
 
246
- > Please use transformers ≳ 4.37.2 to ensure the model works normally.
 
 
 
 
 
 
 
 
247
 
248
  ### Model Loading
249
 
@@ -276,21 +209,6 @@ model = AutoModel.from_pretrained(
276
  trust_remote_code=True).eval()
277
  ```
278
 
279
- #### BNB 4-bit Quantization
280
-
281
- ```python
282
- import torch
283
- from transformers import AutoTokenizer, AutoModel
284
- path = "OpenGVLab/InternVL2_5-38B"
285
- model = AutoModel.from_pretrained(
286
- path,
287
- torch_dtype=torch.bfloat16,
288
- load_in_4bit=True,
289
- low_cpu_mem_usage=True,
290
- use_flash_attn=True,
291
- trust_remote_code=True).eval()
292
- ```
293
-
294
  #### Multiple GPUs
295
 
296
  The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
@@ -304,7 +222,7 @@ def split_model(model_name):
304
  device_map = {}
305
  world_size = torch.cuda.device_count()
306
  num_layers = {
307
- 'InternVL2_5-1B': 24, 'InternVL_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
308
  'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
309
  # Since the first GPU will be used for ViT, treat it as half a GPU.
310
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
@@ -340,6 +258,7 @@ model = AutoModel.from_pretrained(
340
  ### Inference with Transformers
341
 
342
  ```python
 
343
  import numpy as np
344
  import torch
345
  import torchvision.transforms as T
@@ -422,14 +341,44 @@ def load_image(image_file, input_size=448, max_num=12):
422
  pixel_values = torch.stack(pixel_values)
423
  return pixel_values
424
 
425
- # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
  path = 'OpenGVLab/InternVL2_5-38B'
 
427
  model = AutoModel.from_pretrained(
428
  path,
429
  torch_dtype=torch.bfloat16,
 
430
  low_cpu_mem_usage=True,
431
  use_flash_attn=True,
432
- trust_remote_code=True).eval().cuda()
 
433
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
434
 
435
  # set the max number of tiles in `max_num`
@@ -549,13 +498,13 @@ response, history = model.chat(tokenizer, pixel_values, question, generation_con
549
  num_patches_list=num_patches_list, history=None, return_history=True)
550
  print(f'User: {question}\nAssistant: {response}')
551
 
552
- question = 'Describe this video in detail. Don\'t repeat.'
553
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
554
  num_patches_list=num_patches_list, history=history, return_history=True)
555
  print(f'User: {question}\nAssistant: {response}')
556
  ```
557
 
558
- #### Streaming output
559
 
560
  Besides this method, you can also use the following code to get streamed output.
561
 
@@ -600,7 +549,7 @@ pip install lmdeploy>=0.5.3
600
 
601
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
602
 
603
- #### A 'Hello, world' example
604
 
605
  ```python
606
  from lmdeploy import pipeline, TurbomindEngineConfig
@@ -608,18 +557,18 @@ from lmdeploy.vl import load_image
608
 
609
  model = 'OpenGVLab/InternVL2_5-38B'
610
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
611
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
612
  response = pipe(('describe this image', image))
613
  print(response.text)
614
  ```
615
 
616
  If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
617
 
618
- #### Multi-images inference
619
 
620
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
621
 
622
- > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
623
 
624
  ```python
625
  from lmdeploy import pipeline, TurbomindEngineConfig
@@ -627,7 +576,7 @@ from lmdeploy.vl import load_image
627
  from lmdeploy.vl.constants import IMAGE_TOKEN
628
 
629
  model = 'OpenGVLab/InternVL2_5-38B'
630
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
631
 
632
  image_urls=[
633
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
@@ -640,7 +589,7 @@ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe thes
640
  print(response.text)
641
  ```
642
 
643
- #### Batch prompts inference
644
 
645
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
646
 
@@ -649,7 +598,7 @@ from lmdeploy import pipeline, TurbomindEngineConfig
649
  from lmdeploy.vl import load_image
650
 
651
  model = 'OpenGVLab/InternVL2_5-38B'
652
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
653
 
654
  image_urls=[
655
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
@@ -660,7 +609,7 @@ response = pipe(prompts)
660
  print(response)
661
  ```
662
 
663
- #### Multi-turn conversation
664
 
665
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
666
 
@@ -669,7 +618,7 @@ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
669
  from lmdeploy.vl import load_image
670
 
671
  model = 'OpenGVLab/InternVL2_5-38B'
672
- pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
673
 
674
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
675
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
@@ -684,7 +633,7 @@ print(sess.response.text)
684
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
685
 
686
  ```shell
687
- lmdeploy serve api_server OpenGVLab/InternVL2_5-38B --backend turbomind --server-port 23333
688
  ```
689
 
690
  To use the OpenAI-style interface, you need to install OpenAI:
@@ -723,18 +672,18 @@ print(response)
723
 
724
  ## License
725
 
726
- This project is released under the MIT license, while Qwen2 is licensed under the Tongyi Qianwen LICENSE.
727
 
728
  ## Citation
729
 
730
  If you find this project useful in your research, please consider citing:
731
 
732
  ```BibTeX
733
- @article{chen2023internvl,
734
- title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
735
- author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
736
- journal={arXiv preprint arXiv:2312.14238},
737
- year={2023}
738
  }
739
  @article{chen2024far,
740
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
@@ -742,5 +691,10 @@ If you find this project useful in your research, please consider citing:
742
  journal={arXiv preprint arXiv:2404.16821},
743
  year={2024}
744
  }
 
 
 
 
 
 
745
  ```
746
-
 
10
  - multilingual
11
  tags:
12
  - internvl
 
 
 
 
13
  - custom_code
14
  ---
15
 
16
  # InternVL2_5-38B
17
 
18
+ [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[πŸ†• Blog\]](https://internvl.github.io/blog/) [\[πŸ“œ InternVL 1.0\]](https://arxiv.org/abs/2312.14238) [\[πŸ“œ InternVL 1.5\]](https://arxiv.org/abs/2404.16821) [\[πŸ“œ InternVL 2.5\]](https://github.com/OpenGVLab/InternVL/blob/main/InternVL2_5_report.pdf)
 
 
 
19
 
20
+ [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/) [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[πŸš€ Quick Start\]](#quick-start) [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)
21
+
22
+ <div align="center">
23
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
24
+ </div>
25
 
26
  ## Introduction
27
 
28
+ We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)
31
+
32
+ ## InternVL 2.5 Family
33
+
34
+ In the following table, we provide an overview of the InternVL 2.5 series.
35
+
36
+ | Model Name | Vision Part | Language Part | HF Link |
37
+ | :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
38
+ | InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
39
+ | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
40
+ | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
41
+ | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
42
+ | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
43
+ | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
44
+ | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [πŸ€— link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
45
+
46
+ ## Model Architecture
47
+
48
+ As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
49
+
50
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
51
+
52
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448Γ—448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
53
+
54
+ ## Training Strategy
55
+
56
+ ### Dynamic High-Resolution for Multimodal Data
57
+
58
+ In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
59
+
60
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)
61
+
62
+ - For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
63
+
64
+ - For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
65
+
66
+ - For videos, each frame is resized to 448Γ—448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
67
+
68
+ ### Single Model Training Pipeline
69
+
70
+ The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
71
+
72
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)
73
+
74
+ - **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
75
+
76
+ - **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
77
+
78
+ - **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
79
+
80
+ ### Progressive Scaling Strategy
81
+
82
+ We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
83
+
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AVb_PSxhJq1z2eUFNYoqQ.png)
85
+
86
+ Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokensβ€”less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
87
+
88
+ ### Training Enhancements
89
+
90
+ To improve real-world adaptability and performance, we introduce two key techniques:
91
+
92
+ - **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
93
+
94
+ - **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
95
+
96
+ ### Data Organization
97
+
98
+ #### Dataset Configuration
99
+
100
+ In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
101
+
102
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)
103
+
104
+ - **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
105
+
106
+ - **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.
107
+
108
+ - **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
109
+
110
+ #### Data Filtering Pipeline
111
+
112
+ During development, we found that LLMs are highly sensitive to data noise, with even small anomaliesβ€”like outliers or repetitive dataβ€”causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
113
+
114
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)
115
+
116
+ To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
117
+
118
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)
119
+
120
+ The pipeline includes two modules, for **pure-text data**, three key strategies are used:
121
+
122
+ 1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
123
+ 2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
124
+ 3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
125
+
126
+ For **multimodal data**, two strategies are used:
127
+
128
+ 1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
129
+ 2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
130
+
131
+ #### Training Data
132
+
133
+ As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
134
+
135
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)
136
+
137
+ ## Evaluation on Multimodal Capability
138
+
139
+ ### Multimodal Reasoning and Mathematics
140
+
141
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)
142
+
143
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)
144
+
145
+ ### OCR, Chart, and Document Understanding
146
+
147
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)
148
+
149
+ ### Multi-Image & Real-World Comprehension
150
+
151
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)
152
+
153
+ ### Comprehensive Multimodal & Hallucination Evaluation
154
+
155
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)
156
+
157
+ ### Visual Grounding
158
+
159
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)
160
 
161
  ### Multimodal Multilingual Understanding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)
164
+
165
+ ### Video Understanding
166
 
167
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/uD5aYt2wNYL94Xn8MOVih.png)
168
 
169
+ ## Evaluation on Language Capability
170
 
171
+ Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
172
+
173
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)
174
+
175
+ ## Quick Start
176
+
177
+ We provide an example code to run `InternVL2_5-38B` using `transformers`.
178
+
179
+ > Please use transformers>=4.37.2 to ensure the model works normally.
180
 
181
  ### Model Loading
182
 
 
209
  trust_remote_code=True).eval()
210
  ```
211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
  #### Multiple GPUs
213
 
214
  The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
 
222
  device_map = {}
223
  world_size = torch.cuda.device_count()
224
  num_layers = {
225
+ 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
226
  'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
227
  # Since the first GPU will be used for ViT, treat it as half a GPU.
228
  num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
 
258
  ### Inference with Transformers
259
 
260
  ```python
261
+ import math
262
  import numpy as np
263
  import torch
264
  import torchvision.transforms as T
 
341
  pixel_values = torch.stack(pixel_values)
342
  return pixel_values
343
 
344
+ def split_model(model_name):
345
+ device_map = {}
346
+ world_size = torch.cuda.device_count()
347
+ num_layers = {
348
+ 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
349
+ 'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
350
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
351
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
352
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
353
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
354
+ layer_cnt = 0
355
+ for i, num_layer in enumerate(num_layers_per_gpu):
356
+ for j in range(num_layer):
357
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
358
+ layer_cnt += 1
359
+ device_map['vision_model'] = 0
360
+ device_map['mlp1'] = 0
361
+ device_map['language_model.model.tok_embeddings'] = 0
362
+ device_map['language_model.model.embed_tokens'] = 0
363
+ device_map['language_model.output'] = 0
364
+ device_map['language_model.model.norm'] = 0
365
+ device_map['language_model.lm_head'] = 0
366
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
367
+
368
+ return device_map
369
+
370
+ # If you set `load_in_8bit=True`, you will need one 80GB GPUs.
371
+ # If you set `load_in_8bit=False`, you will need at least two 80GB GPUs.
372
  path = 'OpenGVLab/InternVL2_5-38B'
373
+ device_map = split_model('InternVL2_5-38B')
374
  model = AutoModel.from_pretrained(
375
  path,
376
  torch_dtype=torch.bfloat16,
377
+ load_in_8bit=True,
378
  low_cpu_mem_usage=True,
379
  use_flash_attn=True,
380
+ trust_remote_code=True,
381
+ device_map=device_map).eval()
382
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
383
 
384
  # set the max number of tiles in `max_num`
 
498
  num_patches_list=num_patches_list, history=None, return_history=True)
499
  print(f'User: {question}\nAssistant: {response}')
500
 
501
+ question = 'Describe this video in detail.'
502
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
503
  num_patches_list=num_patches_list, history=history, return_history=True)
504
  print(f'User: {question}\nAssistant: {response}')
505
  ```
506
 
507
+ #### Streaming Output
508
 
509
  Besides this method, you can also use the following code to get streamed output.
510
 
 
549
 
550
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
551
 
552
+ #### A 'Hello, world' Example
553
 
554
  ```python
555
  from lmdeploy import pipeline, TurbomindEngineConfig
 
557
 
558
  model = 'OpenGVLab/InternVL2_5-38B'
559
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
560
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=2))
561
  response = pipe(('describe this image', image))
562
  print(response.text)
563
  ```
564
 
565
  If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
566
 
567
+ #### Multi-images Inference
568
 
569
  When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
570
 
571
+ question = 'Describe this video in detail.'
572
 
573
  ```python
574
  from lmdeploy import pipeline, TurbomindEngineConfig
 
576
  from lmdeploy.vl.constants import IMAGE_TOKEN
577
 
578
  model = 'OpenGVLab/InternVL2_5-38B'
579
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=2))
580
 
581
  image_urls=[
582
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
 
589
  print(response.text)
590
  ```
591
 
592
+ #### Batch Prompts Inference
593
 
594
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
595
 
 
598
  from lmdeploy.vl import load_image
599
 
600
  model = 'OpenGVLab/InternVL2_5-38B'
601
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=2))
602
 
603
  image_urls=[
604
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
 
609
  print(response)
610
  ```
611
 
612
+ #### Multi-turn Conversation
613
 
614
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
615
 
 
618
  from lmdeploy.vl import load_image
619
 
620
  model = 'OpenGVLab/InternVL2_5-38B'
621
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192, tp=2))
622
 
623
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
624
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
 
633
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
634
 
635
  ```shell
636
+ lmdeploy serve api_server OpenGVLab/InternVL2_5-38B --backend turbomind --server-port 23333 --tp 2
637
  ```
638
 
639
  To use the OpenAI-style interface, you need to install OpenAI:
 
672
 
673
  ## License
674
 
675
+ This project is released under the MIT License. This project uses the pre-trained Qwen2.5-32B-Instruct as a component, which is licensed under the Apache License 2.0.
676
 
677
  ## Citation
678
 
679
  If you find this project useful in your research, please consider citing:
680
 
681
  ```BibTeX
682
+ @article{gao2024mini,
683
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
684
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
685
+ journal={arXiv preprint arXiv:2410.16261},
686
+ year={2024}
687
  }
688
  @article{chen2024far,
689
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
 
691
  journal={arXiv preprint arXiv:2404.16821},
692
  year={2024}
693
  }
694
+ @article{chen2023internvl,
695
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
696
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
697
+ journal={arXiv preprint arXiv:2312.14238},
698
+ year={2023}
699
+ }
700
  ```