File size: 39,814 Bytes
96cbd7b
 
 
 
 
bf3e2cf
96cbd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf3e2cf
 
5312ec6
 
 
 
6f70a21
5312ec6
 
bf3e2cf
7d29acf
5312ec6
 
 
 
bf3e2cf
 
6f70a21
 
5312ec6
bf3e2cf
 
 
5312ec6
 
bf3e2cf
5312ec6
6f70a21
bf3e2cf
5312ec6
6f70a21
5312ec6
 
 
bf3e2cf
5312ec6
 
 
 
bf3e2cf
96cbd7b
 
 
bf3e2cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96cbd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternViT-6B-448px-V2_5
  - Qwen/Qwen2.5-72B-Instruct
base_model_relation: merge
language:
  - multilingual
tags:
  - internvl
  - vision
  - ocr
  - multi-image
  - video
  - custom_code
---

# InternVL2_5-78B

[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[🆕 Blog\]](https://internvl.github.io/blog/)  
[\[📜 InternVL 2.5 Report\]]()
[\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)  [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821)
[\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/)  [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[🚀 Quick Start\]](#quick-start)    [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64564b0e4a7ffb7d5a47f412/3i-8-6VSoTAo0-OKUUpec.jpeg)

## Introduction

We are excited to introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.

Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to achieve over **70%** on the **MMMU benchmark**. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. This repository contains the instruction-tuned **InternVL2_5-78B** model.

We delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. For more details, please refer to our [blog](), [tech report]() and [GitHub](https://github.com/OpenGVLab/InternVL).

|      Model Name      |                                     Vision Part                                     |                                        Language Part                                         |                             HF Link                              | 
| :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: |
|     InternVL2_5-1B     |    [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5)    |            [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)            |     [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B)     |  
|     InternVL2_5-2B     |    [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5)    |          [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat)          |     [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B)     |     
|     InternVL2_5-4B     |    [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5)    |    [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)     |     [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B)     |     
|     InternVL2_5-8B     |    [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5)    |          [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat)          |     [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B)     |     
|    InternVL2_5-26B     | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) |           [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat)           |    [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B)     |   
|    InternVL2_5-38B     | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) |       [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)       |    [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B)     | 
| InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |

## Model Details

InternVL 2.5is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2_5-78B consists of [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5), an MLP projector, and [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct).

## Performance

### Image Benchmarks


| Benchmark                  | GPT-4V      | GPT-4o-20240513 | Claude-3-Opus | Claude-3.5-Sonnet | Gemini-1.5-Pro | LLaVA-OneVision-72B | Qwen2-VL-72B | InternVL2.5-78B |
|----------------------------|-------------|-----------------|---------------|-------------------|----------------|---------------------|--------------|-----------------|
| MMMU<sub>val<sub>                 | 63.1        | 69.1            | -             | 68.3              | 62.2           | 56.8                | 64.5         | 70.1            |
| MMMU<sub>test<sub>              | -           | -               | -             | -                 | -              | -                   | -            | 61.8            |
| MMMU-PRO<sub>overall<sub>        | -           | 51.9            | -             | 51.5              | 46.9           | 31.0                | 46.2         | 48.6            |
| MathVista<sub>mini<sub>         | 58.1        | 63.8            | -             | 67.7              | 63.9           | 67.5                | 70.5         | 72.3            |
| MathVision<sub>mini<sub>         | -           | -               | -             | -                 | -              | -                   | -            | 34.9            |
| MathVision<sub>full<sub>          | 24.0        | 30.4            | -             | -                 | 19.2           | -                   | 25.9         | 32.2            |
| MathVerse<sub>mini<sub>         | 32.8        | 50.2            | -             | -                 | -              | 39.1                | -            | 51.7            |
| Olympiad Bench             | 18.0        | 25.9            | -             | -                 | -              | -                   | -            | 11.6            |
| AI2D<sub>(w / wo M)<sub>            | 78.2 / 89.4 | 84.6 / 94.2     | 70.6 / 88.1   | 81.2 / 94.7       | 79.1 / 94.4    | 85.6 / -            | 88.1 / -     | 89.1 / 95.7     |
| ChartQA<sub>test avg.<sub>        | 78.5        | 85.7            | 80.8          | 90.8              | 87.2           | 83.7                | 88.3         | 88.3            |
| TextVQA<sub>val<sub>             | 78.0        | 77.4            | 67.5          | 74.1              | 78.8           | 80.5                | 85.5         | 83.4            |
| DocVQA<sub>test<sub>             | 88.4        | 92.8            | 89.3          | 95.2              | 93.1           | 91.3                | 96.5         | 95.1            |
| InfoVQA<sub>test<sub>            | 75.1        | 79.2            | 55.6          | 74.3              | 81.0           | 74.9                | 84.5         | 84.1            |
| OCR-Bench                  | 645         | 736             | 694           | 788               | 754            | 741                 | 877          | 854             |
| SEED-2 Plus                | 53.8        | 72.0            | 44.2          | 71.7              | -              | 69.7                | -            | 71.3            |
| CharXiv<sub>RQ/DQ<sub>          | 37.1 / 79.9 | 47.1 / 84.5     | 30.2 / 71.6   | 60.2 / 84.3       | 43.3 / 72.0    | -                   | 91.3 / 94.6  | 42.4 / 82.3     |
| VCR-EN-Easy<sub>(EM / Jaccard)<sub> | 52.0 / 65.4 | 91.6 / 96.4     | 62.0 / 77.7   | 63.9 / 74.7       | 62.7 / 77.7    | -                   | 94.6         | 95.7 / 94.5     |
| BLINK<sub>val<sub>                | 54.6        | 68.0            | -             | -                 | -              | 55.4                | -            | 63.8            |
| Mantis Eval                | 62.7        | -               | -             | -                 | -              | 77.6                | -            | 77.0            |
| MMIU                       | -           | 55.7            | -             | 53.4              | 53.4           | -                   | -            | 55.8            |
| Muir Bench                 | 62.3        | 68.0            | -             | -                 | -              | 54.8                | -            | 63.5            |
| MMT<sub>val<sub>                  | 64.3        | 65.4            | -             | -                 | 64.5           | -                   | 71.8         | 70.8            |
| MIRB<sub>avg.<sub>               | 53.1        | -               | -             | -                 | -              | -                   | -            | 61.1            |
| RealWorld QA               | 61.4        | 75.4            | -             | 60.1              | 67.5           | 71.9                | 77.8         | 78.7            |
| MME-RW<sub>EN<sub>                | -           | 45.2            | -             | 51.6              | 38.2           | -                   | -            | 62.9            |
| WildVision<sub>(win rate)<sub>      | 71.8        | 80.6            | -             | -                 | -              | -                   | -            | 71.4            |
| R-Bench                    | 65.6        | 77.7            | -             | -                 | -              | -                   | -            | 77.2            |
| MME<sub>sum<sub>                  | 1926.6      | --              | 1586.8        | --                | --             | 2261.0              | 2482.7       | 2494.5          |
| MMB<sub>(EN / CN)<sub>              | 81.0 / 80.2 | 83.4 / 82.1     | 63.3 / 59.2   | 82.6 / 83.5       | 73.9 / 73.8    | 85.8 / 85.3         | 86.5 / 86.6  | 88.3 / 88.5     |
| MMBv1.1<sub>EN<sub>               | 80.0        | 83.1            | 60.1          | 80.9              | 74.6           | 85.0                | 85.9         | 87.4            |
| MMVet<sub>turbo<sub>              | 67.5        | 69.1            | 51.7          | 70.1              | 64.0           | 60.6                | 74.0         | 72.3            |
| MMVetv2<sub>0613<sub>            | 66.3        | 71.0            | 55.8          | 71.8              | 66.9           | --                  | 66.9         | 65.5            |
| MMStar                     | 56.0        | 64.7            | 45.7          | 65.1              | 59.1           | 65.8                | 68.3         | 69.5            |
| HallBench<sub>avg.<sub>           | 46.5        | 55.0            | 37.8          | 55.5              | 45.6           | 49.0                | 58.1         | 57.4            |
| MMHal<sub>score<sub>              | --          | 4.00            | --            | --                | --             | --                  | --           | 3.89            |
| CRPE<sub>relation<sub>            | --          | 76.6            | --            | --                | --             | --                  | --           | 78.8            |
| POPE<sub>avg.<sub>               | --          | 86.9            | --            | --                | --             | --                  | --           | 90.8            |


### Video Benchmarks

| Model Name                                  | Video-MME (wo / w sub)        | MVBench | MMBench-Video (val) | MLVU (M-Avg) | LongVideoBench (val total) | CG-Bench v1.1 (long / clue acc.)     |
|---------------------------------------------|-------------|------|-------|-------|------|-------------|
| **InternVL2.5-1B**                              | 50.3 / 52.3 | 64.3 | 1.36  | 57.3  | 47.9 | -           |
| Qwen2-VL-2B          | 55.6 / 60.4 | 63.2 | -     | -     | -    | -           |
| **InternVL2.5-2B**                              | 51.9 / 54.1 | 68.8 | 1.44  | 61.4  | 52.0 | -           |
| **InternVL2.5-4B**                              | 62.3 / 63.6 | 71.6 | 1.73  | 68.3  | 55.2 | -           |
| VideoChat2-HD        | 45.3 / 55.7 | 62.3 | 1.22  | 47.9  | -    | -           |
| MiniCPM-V-2.6         | 60.9 / 63.6 | -    | 1.70  | -     | 54.9 | -           |
| LLaVA-OneVision-7B     | 58.2 /  -  | 56.7 | -     | -     | -    | -           |
| Qwen2-VL-7B          | 63.3 / 69.0 | 67.0 | 1.44  | -     | 55.6 | -           |
| **InternVL2.5-8B**                              | 64.2 / 66.9 | 72.0 | 1.68  | 68.9  | 60.0 | -           |
| **InternVL2.5-26B**                             | 66.9 / 69.2 | 75.2 | 1.86  | 72.3  | 59.9 | -           |
| Oryx-1.5-32B                                | 67.3 / 74.9 | 70.1 | 1.52  | 72.3  | -    | -           |
| VILA-1.5-40B             | 60.1 / 61.1 | -    | 1.61  | 56.7  | -    | -           |
| **InternVL2.5-38B**                             | 70.7 / 73.1 | 74.4 | 1.82  | 75.3  | 63.3 | -           |
| GPT-4V/4T             | 59.9 / 63.3 | 43.7 | 1.53  | 49.2  | 59.1 | -           |
| GPT-4o-20240513                | 71.9 / 77.2 | -    | 1.63  | 64.6  | 66.7 | -           |
| GPT-4o-20240806                | -           | -    | 1.87  | -     | -    | -           |
| Gemini-1.5-Pro     | 75.0 / 81.3 | -    | 1.30  | -     | 64.0 | -           |
| VideoLLaMA2-72B | 61.4 / 63.1 | 62.0 | -     | -     | -    | -           |
| LLaVA-OneVision-72B    | 66.2 / 69.5 | 59.4 | -     | 66.4  | 61.3 | -           |
| Qwen2-VL-72B         | 71.2 / 77.8 | 73.6 | 1.70  | -     | -    | 41.3 / 56.2 |
| InternVL2-Llama3-76B     | 64.7 / 67.8 | 69.6 | 1.71  | 69.9  | 61.1 | -           |
| **InternVL2.5-78B**                             | 72.1 / 74.0 | 76.4 | 1.97  | 75.7  | 63.6 | 42.2 / 58.5 |

### Multimodal Multilingual Understanding

<table style="width:100%; border-collapse: collapse;">
  <thead>
    <tr>
      <th rowspan="2">Model Name</th>
      <th colspan="6">MMMB</th>
      <th colspan="6">Multilingual MMBench</th>
      <th>MTVQA</th>
    </tr>
    <tr>
      <th>en</th>
      <th>zh</th>
      <th>pt</th>
      <th>ar</th>
      <th>tr</th>
      <th>ru</th>
      <th>en</th>
      <th>zh</th>
      <th>pt</th>
      <th>ar</th>
      <th>tr</th>
      <th>ru</th>
      <th>(avg)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>GPT-4V </td>
      <td>75.0</td>
      <td>74.2</td>
      <td>71.5</td>
      <td>73.5</td>
      <td>69.0</td>
      <td>73.1</td>
      <td>77.6</td>
      <td>74.4</td>
      <td>72.5</td>
      <td>72.3</td>
      <td>70.5</td>
      <td>74.8</td>
      <td>22.0</td>
    </tr>
    <tr>
      <td>GPT-4o </td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>--</td>
      <td>27.8</td>
    </tr>
    <tr>
      <td>Qwen-VL-Max </td>
      <td>77.2</td>
      <td>75.3</td>
      <td>72.2</td>
      <td>70.8</td>
      <td>66.0</td>
      <td>74.2</td>
      <td>76.8</td>
      <td>77.6</td>
      <td>74.6</td>
      <td>75.0</td>
      <td>69.1</td>
      <td>75.0</td>
      <td>--</td>
    </tr>
    <tr>
      <td>Gemini-1.0-Pro </td>
      <td>75.0</td>
      <td>71.9</td>
      <td>70.6</td>
      <td>69.9</td>
      <td>69.6</td>
      <td>72.7</td>
      <td>73.6</td>
      <td>72.1</td>
      <td>70.3</td>
      <td>61.1</td>
      <td>69.8</td>
      <td>70.5</td>
      <td>--</td>
    </tr>
    <tr>
      <td>Qwen2-VL-72B </td>
      <td>86.8</td>
      <td>85.3</td>
      <td>85.2</td>
      <td>84.8</td>
      <td>84.2</td>
      <td>85.3</td>
      <td>86.9</td>
      <td>87.2</td>
      <td>85.8</td>
      <td>83.5</td>
      <td>84.4</td>
      <td>85.3</td>
      <td>30.9</td>
    </tr>
    <tr>
      <td>InternVL2-Llama3-76B </td>
      <td>85.3</td>
      <td>85.1</td>
      <td>82.8</td>
      <td>82.8</td>
      <td>83.0</td>
      <td>83.7</td>
      <td>87.8</td>
      <td>87.3</td>
      <td>85.9</td>
      <td>83.1</td>
      <td>85.0</td>
      <td>85.7</td>
      <td>22.0</td>
    </tr>
    <tr>
      <td>InternVL2.5-76B</td>
      <td>86.3</td>
      <td>85.6</td>
      <td>85.1</td>
      <td>84.8</td>
      <td>83.1</td>
      <td>85.4</td>
      <td>90.0</td>
      <td>89.7</td>
      <td>87.4</td>
      <td>83.3</td>
      <td>84.9</td>
      <td>86.3</td>
      <td>31.9</td>
    </tr>
  </tbody>
</table>


### Visual Grounding

<table border="1" cellspacing="0" cellpadding="5">
  <thead>
    <tr>
      <th rowspan="2">Model Name</th>
      <th colspan="3">RefCOCO</th>
      <th colspan="3">RefCOCO+</th>
      <th colspan="2">RefCOCOg</th>
      <th rowspan="2">avg</th>
    </tr>
    <tr>
      <th>val</th>
      <th>test-A</th>
      <th>test-B</th>
      <th>val</th>
      <th>test-A</th>
      <th>test-B</th>
      <th>val</th>
      <th>test</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Grounding-DINO-L</td>
      <td>90.6</td>
      <td>93.2</td>
      <td>88.2</td>
      <td>82.8</td>
      <td>89.0</td>
      <td>75.9</td>
      <td>86.1</td>
      <td>87.0</td>
      <td>86.6</td>
    </tr>
    <tr>
      <td>UNINEXT-H</td>
      <td>92.6</td>
      <td>94.3</td>
      <td>91.5</td>
      <td>85.2</td>
      <td>89.6</td>
      <td>79.8</td>
      <td>88.7</td>
      <td>89.4</td>
      <td>88.9</td>
    </tr>
    <tr>
      <td>ONE-PEACE</td>
      <td>92.6</td>
      <td>94.2</td>
      <td>89.3</td>
      <td>88.8</td>
      <td>92.2</td>
      <td>83.2</td>
      <td>89.2</td>
      <td>89.3</td>
      <td>89.8</td>
    </tr>
    <tr>
      <td>Qwen2-VL-72B</td>
      <td>93.2</td>
      <td>95.3</td>
      <td>90.7</td>
      <td>90.1</td>
      <td>93.8</td>
      <td>85.6</td>
      <td>89.9</td>
      <td>90.4</td>
      <td>91.1</td>
    </tr>
    <tr>
      <td>InternVL2-Llama3-76B</td>
      <td>92.2</td>
      <td>94.8</td>
      <td>88.4</td>
      <td>88.8</td>
      <td>93.1</td>
      <td>82.8</td>
      <td>89.5</td>
      <td>90.3</td>
      <td>90.0</td>
    </tr>
    <tr>
      <td>InternVL2.5-78B</td>
      <td>93.7</td>
      <td>95.6</td>
      <td>92.5</td>
      <td>90.4</td>
      <td>94.7</td>
      <td>86.9</td>
      <td>92.7</td>
      <td>92.2</td>
      <td>92.3</td>
    </tr>
  </tbody>
</table>


### Invitation to Evaluate InternVL

We welcome MLLM benchmark developers to assess our InternVL series models. If you need to add your evaluation results here, please contact me at [[email protected]](mailto:[email protected]).

## Quick Start

We provide an example code to run InternVL2_5-78B using `transformers`.

We also welcome you to experience the InternVL series models in our [online demo](https://internvl.opengvlab.com/).

> Please use transformers ≳ 4.37.2 to ensure the model works normally.

### Model Loading

#### 16-bit (bf16 / fp16)

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL2_5-78B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
```

#### BNB 8-bit Quantization

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL2_5-78B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval()
```

#### BNB 4-bit Quantization

```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL2_5-78B"
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval()
```

#### Multiple GPUs

The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.

```python
import math
import torch
from transformers import AutoTokenizer, AutoModel

def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = {
        'InternVL2_5-1B': 24, 'InternVL_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
        'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map

path = "OpenGVLab/InternVL2_5-78B"
device_map = split_model('InternVL2_5-78B')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map).eval()
```

### Inference with Transformers

```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2_5-78B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]

question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list,
                               history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)

questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
                             num_patches_list=num_patches_list,
                             questions=questions,
                             generation_config=generation_config)
for question, response in zip(questions, responses):
    print(f'User: {question}\nAssistant: {response}')

# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list

video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Describe this video in detail. Don\'t repeat.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
                               num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
```

#### Streaming output

Besides this method, you can also use the following code to get streamed output.

```python
from transformers import TextIteratorStreamer
from threading import Thread

# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
    tokenizer=tokenizer, pixel_values=pixel_values, question=question,
    history=None, return_history=False, generation_config=generation_config,
))
thread.start()

# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
    if new_text == model.conv_template.sep:
        break
    generated_text += new_text
    print(new_text, end='', flush=True)  # Print each new chunk of generated text on the same line
```

## Finetune

Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.

## Deployment

### LMDeploy

LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.

```sh
pip install lmdeploy>=0.5.3
```

LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.

#### A 'Hello, world' example

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
response = pipe(('describe this image', image))
print(response.text)
```

If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.

#### Multi-images inference

When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.

> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN

model = 'OpenGVLab/InternVL2_5-78B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
    'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]

images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
```

#### Batch prompts inference

Conducting inference with batch prompts is quite straightforward; just place them within a list structure:

```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))

image_urls=[
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
    "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
```

#### Multi-turn conversation

There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.

```python
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2_5-78B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))

image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
```

#### Service

LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:

```shell
lmdeploy serve api_server OpenGVLab/InternVL2_5-78B --backend turbomind --server-port 23333
```

To use the OpenAI-style interface, you need to install OpenAI:

```shell
pip install openai
```

Then, use the code below to make the API call:

```python
from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)
```

## License

This project is released under the MIT license, while Qwen2 is licensed under the Tongyi Qianwen LICENSE.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
```