Weiyun1025 commited on
Commit
1594f77
·
verified ·
1 Parent(s): 0458c88

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -10
README.md CHANGED
@@ -9,7 +9,7 @@ base_model:
9
  - Qwen/Qwen2.5-1.5B
10
  base_model_relation: merge
11
  datasets:
12
- - OpenGVLab/MMPR-v1.1
13
  language:
14
  - multilingual
15
  tags:
@@ -31,7 +31,7 @@ tags:
31
 
32
  We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
33
  Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
34
- Additionally, benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series, which serves as the initialization of the langauge component in InternVL3.
35
 
36
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/fMRWSzB8ysrafQ2XJW9WR.png)
37
 
@@ -49,6 +49,8 @@ In the following table, we provide an overview of the InternVL3 series.
49
  | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
50
  | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
51
 
 
 
52
  ## Model Architecture
53
 
54
  As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
@@ -104,35 +106,45 @@ In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B]
104
 
105
  ### Multimodal Reasoning and Mathematics
106
 
107
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/Vg18MtN8tpX-eF4ls6m26.png)
108
 
109
  ### OCR, Chart, and Document Understanding
110
 
111
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/cx3DG7RfFg5LvHfbjqyWg.png)
112
 
113
  ### Multi-Image & Real-World Comprehension
114
 
115
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/po72y3ypO6_RmtXty0b0U.png)
116
 
117
  ### Comprehensive Multimodal & Hallucination Evaluation
118
 
119
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/RFykBfuGY8sJ3paZpmj39.png)
120
 
121
  ### Visual Grounding
122
 
123
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/N2V8VPGmcivyKvOAS7F5H.png)
124
 
125
  ### Multimodal Multilingual Understanding
126
 
127
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/wPKL20-qJj4HZGuLn1bmf.png)
128
 
129
  ### Video Understanding
130
 
131
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/NuC0HDxJyW-JmvckMAqE8.png)
 
 
 
 
 
 
 
 
132
 
133
  ## Evaluation on Language Capability
134
 
135
- Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series, which serves as the initialization of the langauge component in InternVL3.
 
 
136
 
137
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/geqAQiiganmQiDY65VIpm.png)
138
 
 
9
  - Qwen/Qwen2.5-1.5B
10
  base_model_relation: merge
11
  datasets:
12
+ - OpenGVLab/MMPR-v1.2
13
  language:
14
  - multilingual
15
  tags:
 
31
 
32
  We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
33
  Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
34
+ Additionally, we compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
35
 
36
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/fMRWSzB8ysrafQ2XJW9WR.png)
37
 
 
49
  | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
50
  | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
51
 
52
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/9wf54ERGoiM3-QICkj3Oc.png)
53
+
54
  ## Model Architecture
55
 
56
  As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
 
106
 
107
  ### Multimodal Reasoning and Mathematics
108
 
109
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/uVIhB9BKlirAc6zlQYI0a.png)
110
 
111
  ### OCR, Chart, and Document Understanding
112
 
113
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/ivWJi3Rx_snJTfq--_9kD.png)
114
 
115
  ### Multi-Image & Real-World Comprehension
116
 
117
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/y1OnFvJxei4dd9ZzCZ6yo.png)
118
 
119
  ### Comprehensive Multimodal & Hallucination Evaluation
120
 
121
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/XeBACd5_k_1lBbT70c6rp.png)
122
 
123
  ### Visual Grounding
124
 
125
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/LFBrfb6amBxL_WKOqs5gr.png)
126
 
127
  ### Multimodal Multilingual Understanding
128
 
129
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/1wc3dA3KwIeMWOVja2GF0.png)
130
 
131
  ### Video Understanding
132
 
133
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/qU5-6VDYtFcXxSq2bNH7T.png)
134
+
135
+ ### GUI Grounding
136
+
137
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/FRmXQGxgjbp1O_fYeJ2he.png)
138
+
139
+ ### Spatial Reasoning
140
+
141
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/J4AmWoDuJ6JwILdtsNJcN.png)
142
 
143
  ## Evaluation on Language Capability
144
 
145
+ We compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
146
+ Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
147
+ Please note that the evaluation scores of Qwen2.5 series may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
148
 
149
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/geqAQiiganmQiDY65VIpm.png)
150