Weiyun1025 commited on
Commit
f7d8122
·
verified ·
1 Parent(s): bc7d877

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -10
README.md CHANGED
@@ -7,7 +7,7 @@ base_model:
7
  - internlm/internlm3-8b-instruct
8
  base_model_relation: merge
9
  datasets:
10
- - OpenGVLab/MMPR-v1.1
11
  language:
12
  - multilingual
13
  tags:
@@ -29,7 +29,7 @@ tags:
29
 
30
  We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
31
  Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
32
- Additionally, benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series, which serves as the initialization of the langauge component in InternVL3.
33
 
34
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/fMRWSzB8ysrafQ2XJW9WR.png)
35
 
@@ -47,6 +47,8 @@ In the following table, we provide an overview of the InternVL3 series.
47
  | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
48
  | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
49
 
 
 
50
  ## Model Architecture
51
 
52
  As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
@@ -102,35 +104,45 @@ In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B]
102
 
103
  ### Multimodal Reasoning and Mathematics
104
 
105
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/Vg18MtN8tpX-eF4ls6m26.png)
106
 
107
  ### OCR, Chart, and Document Understanding
108
 
109
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/cx3DG7RfFg5LvHfbjqyWg.png)
110
 
111
  ### Multi-Image & Real-World Comprehension
112
 
113
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/po72y3ypO6_RmtXty0b0U.png)
114
 
115
  ### Comprehensive Multimodal & Hallucination Evaluation
116
 
117
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/RFykBfuGY8sJ3paZpmj39.png)
118
 
119
  ### Visual Grounding
120
 
121
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/N2V8VPGmcivyKvOAS7F5H.png)
122
 
123
  ### Multimodal Multilingual Understanding
124
 
125
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/wPKL20-qJj4HZGuLn1bmf.png)
126
 
127
  ### Video Understanding
128
 
129
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/NuC0HDxJyW-JmvckMAqE8.png)
 
 
 
 
 
 
 
 
130
 
131
  ## Evaluation on Language Capability
132
 
133
- Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series, which serves as the initialization of the langauge component in InternVL3.
 
 
134
 
135
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/geqAQiiganmQiDY65VIpm.png)
136
 
 
7
  - internlm/internlm3-8b-instruct
8
  base_model_relation: merge
9
  datasets:
10
+ - OpenGVLab/MMPR-v1.2
11
  language:
12
  - multilingual
13
  tags:
 
29
 
30
  We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
31
  Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
32
+ Additionally, we compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
33
 
34
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/fMRWSzB8ysrafQ2XJW9WR.png)
35
 
 
47
  | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
48
  | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
49
 
50
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/9wf54ERGoiM3-QICkj3Oc.png)
51
+
52
  ## Model Architecture
53
 
54
  As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
 
104
 
105
  ### Multimodal Reasoning and Mathematics
106
 
107
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/uVIhB9BKlirAc6zlQYI0a.png)
108
 
109
  ### OCR, Chart, and Document Understanding
110
 
111
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/ivWJi3Rx_snJTfq--_9kD.png)
112
 
113
  ### Multi-Image & Real-World Comprehension
114
 
115
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/y1OnFvJxei4dd9ZzCZ6yo.png)
116
 
117
  ### Comprehensive Multimodal & Hallucination Evaluation
118
 
119
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/XeBACd5_k_1lBbT70c6rp.png)
120
 
121
  ### Visual Grounding
122
 
123
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/LFBrfb6amBxL_WKOqs5gr.png)
124
 
125
  ### Multimodal Multilingual Understanding
126
 
127
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/1wc3dA3KwIeMWOVja2GF0.png)
128
 
129
  ### Video Understanding
130
 
131
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/qU5-6VDYtFcXxSq2bNH7T.png)
132
+
133
+ ### GUI Grounding
134
+
135
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/FRmXQGxgjbp1O_fYeJ2he.png)
136
+
137
+ ### Spatial Reasoning
138
+
139
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/J4AmWoDuJ6JwILdtsNJcN.png)
140
 
141
  ## Evaluation on Language Capability
142
 
143
+ We compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
144
+ Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
145
+ Please note that the evaluation scores of Qwen2.5 series may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
146
 
147
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/geqAQiiganmQiDY65VIpm.png)
148