czczup commited on
Commit
65a01b8
·
verified ·
1 Parent(s): c63e9b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -10,7 +10,7 @@ datasets:
10
  pipeline_tag: image-feature-extraction
11
  ---
12
 
13
- # Model Card for InternViT-6B-448px-V1-5
14
  <p align="center">
15
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AUE-3OBtfr9vDA7Elgkhd.webp" alt="Image Description" width="300" height="300">
16
  </p>
@@ -24,11 +24,10 @@ Additionally, we enhance the data scale, quality, and diversity of the pre-train
24
  ## Model Details
25
  - **Model Type:** vision foundation model, feature backbone
26
  - **Model Stats:**
27
- - Params (M): 5540 (the last 3 blocks are discarded)
28
  - Image size: 448 x 448, training with 1 - 12 tiles
29
  - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong-OCR, LaionCOCO-OCR, and other OCR-related datasets.
30
  To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
31
- - **Note:** InternViT-6B originally had 48 blocks, and we found that using the output after the fourth-to-last block worked best for MLLM. For ease of use and to save GPU memory, we simply discarded the last 3 blocks. Now, the model has only 45 blocks and the number of parameters has been reduced from 5.9B to 5.5B. Therefore, if you want to build a MLLM based on this model, **please make use of the features from the last layer.**
32
 
33
  ## Released Models
34
  ### Vision Foundation model
@@ -56,14 +55,14 @@ from PIL import Image
56
  from transformers import AutoModel, CLIPImageProcessor
57
 
58
  model = AutoModel.from_pretrained(
59
- 'OpenGVLab/InternViT-6B-448px-V1-5',
60
  torch_dtype=torch.bfloat16,
61
  low_cpu_mem_usage=True,
62
  trust_remote_code=True).cuda().eval()
63
 
64
  image = Image.open('./examples/image1.jpg').convert('RGB')
65
 
66
- image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')
67
 
68
  pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
69
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
 
10
  pipeline_tag: image-feature-extraction
11
  ---
12
 
13
+ # Model Card for InternViT-300M-448px
14
  <p align="center">
15
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AUE-3OBtfr9vDA7Elgkhd.webp" alt="Image Description" width="300" height="300">
16
  </p>
 
24
  ## Model Details
25
  - **Model Type:** vision foundation model, feature backbone
26
  - **Model Stats:**
27
+ - Params (M): 304
28
  - Image size: 448 x 448, training with 1 - 12 tiles
29
  - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong-OCR, LaionCOCO-OCR, and other OCR-related datasets.
30
  To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
 
31
 
32
  ## Released Models
33
  ### Vision Foundation model
 
55
  from transformers import AutoModel, CLIPImageProcessor
56
 
57
  model = AutoModel.from_pretrained(
58
+ 'OpenGVLab/InternViT-300M-448px',
59
  torch_dtype=torch.bfloat16,
60
  low_cpu_mem_usage=True,
61
  trust_remote_code=True).cuda().eval()
62
 
63
  image = Image.open('./examples/image1.jpg').convert('RGB')
64
 
65
+ image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-300M-448px')
66
 
67
  pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
68
  pixel_values = pixel_values.to(torch.bfloat16).cuda()