zwgao commited on
Commit
fefb518
·
verified ·
1 Parent(s): ebcc89a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -10
README.md CHANGED
@@ -11,19 +11,14 @@ pipeline_tag: image-feature-extraction
11
  ---
12
 
13
  # Model Card for InternViT-6B-448px-V1-2
14
-
15
- <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/re658pVjHaJEnJerlmRco.webp" alt="Image Description" width="300" height="300">
 
16
 
17
  \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
18
 
19
- | Model | Date | Download | Note |
20
- | ----------------------- | ---------- | ---------------------------------------------------------------------- | -------------------------------- |
21
- | InternViT-6B-448px-V1.5 | 2024.04.20 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | support dynamic resolution, super strong OCR (🔥new) |
22
- | InternViT-6B-448px-V1.2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) | 448 resolution |
23
- | InternViT-6B-448px-V1.0 | 2024.01.30 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) | 448 resolution |
24
- | InternViT-6B-224px | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-224px) | vision foundation model |
25
- | InternVL-14B-224px | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-14B-224px) | vision-language foundation model |
26
-
27
 
28
  ## Model Details
29
  - **Model Type:** vision foundation model, feature backbone
@@ -33,6 +28,27 @@ pipeline_tag: image-feature-extraction
33
  - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong, LaionCOCO, CC3M, and OCR-related datasets.
34
  To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
35
  - **Note:** InternViT-6B originally had 48 blocks, and we found that using the output after the fourth-to-last block worked best for VLLM. For ease of use and to save GPU memory, we simply discarded the last 3 blocks. Now, the model has only 45 blocks and the number of parameters has been reduced from 5.9B to 5.5B. Therefore, if you want to build a VLLM based on this model, **please make use of the features from the last layer.**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ## Model Usage (Image Embeddings)
37
 
38
  ```python
 
11
  ---
12
 
13
  # Model Card for InternViT-6B-448px-V1-2
14
+ <p align="center">
15
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/re658pVjHaJEnJerlmRco.webp" alt="Image Description" width="300" height="300">
16
+ </p>
17
 
18
  \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
19
 
20
+ We release our new InternViT weights as InternViT-6B-448px-V1-2. The continuous pre-training of the InternViT-6B model is involved in the [InternVL 1.2](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) update. Specifically, we increased the resolution of InternViT-6B from 224 to 448 and integrated it with [Nous-Hermes-2-Yi-34B]((https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B).
21
+ To equip the model with high-resolution processing and OCR capabilities, both the vision encoder and the MLP were activated for training, utilizing a mix of image captioning and OCR-specific datasets.
 
 
 
 
 
 
22
 
23
  ## Model Details
24
  - **Model Type:** vision foundation model, feature backbone
 
28
  - **Pretrain Dataset:** LAION-en, LAION-zh, COYO, GRIT, COCO, TextCaps, Objects365, OpenImages, All-Seeing, Wukong, LaionCOCO, CC3M, and OCR-related datasets.
29
  To enhance the OCR capability of the model, we have incorporated additional OCR data alongside the general caption datasets. Specifically, we utilized PaddleOCR to perform Chinese OCR on images from Wukong and English OCR on images from LAION-COCO.
30
  - **Note:** InternViT-6B originally had 48 blocks, and we found that using the output after the fourth-to-last block worked best for VLLM. For ease of use and to save GPU memory, we simply discarded the last 3 blocks. Now, the model has only 45 blocks and the number of parameters has been reduced from 5.9B to 5.5B. Therefore, if you want to build a VLLM based on this model, **please make use of the features from the last layer.**
31
+
32
+ ## Released Models
33
+
34
+ ### Vision Foundation model
35
+ | Model | Date | Download | Note |
36
+ | ----------------------- | ---------- | ---------------------------------------------------------------------- | -------------------------------- |
37
+ | InternViT-6B-448px-V1.5 | 2024.04.20 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | support dynamic resolution, super strong OCR (🔥new) |
38
+ | InternViT-6B-448px-V1.2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2) | 448 resolution |
39
+ | InternViT-6B-448px-V1.0 | 2024.01.30 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0) | 448 resolution |
40
+ | InternViT-6B-224px | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-224px) | vision foundation model |
41
+ | InternVL-14B-224px | 2023.12.22 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-14B-224px) | vision-language foundation model |
42
+
43
+ ### Multimodal Large Language Model (MLLM)
44
+ | Model | Date | Download | Note |
45
+ | ----------------------- | ---------- | --------------------------------------------------------------------------- | ---------------------------------- |
46
+ | InternVL-Chat-V1.5 | 2024.04.18 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5) | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
47
+ | InternVL-Chat-V1.2-Plus | 2024.02.21 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) | more SFT data and stronger |
48
+ | InternVL-Chat-V1.2 | 2024.02.11 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) | scaling up LLM to 34B |
49
+ | InternVL-Chat-V1.1 | 2024.01.24 | 🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1) | support Chinese and stronger OCR |
50
+
51
+
52
  ## Model Usage (Image Embeddings)
53
 
54
  ```python