File size: 140,784 Bytes
7fc435d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1bb51
35ce2b5
7fc435d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
import numpy as np
import cv2
import os
import math

import torch
from torch import nn

import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange

try:
    from flash_attn.modules.mlp import FusedMLP
except:
    print(f'FusedMLP of flash_attn is not installed!!!')

try:
    from flash_attn.ops.rms_norm import DropoutAddRMSNorm
except:
    print(f'DropoutAddRMSNorm of flash_attn is not installed!!!')

from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
from flash_attn.bert_padding import unpad_input, pad_input


class FlashAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
        super().__init__()
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
                max_s=None, need_weights=False):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
                if unpadded: (nnz, 3, h, d)
            key_padding_mask: a bool tensor of shape (B, S)
        """
        assert not need_weights
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda

        if cu_seqlens is None:
            batch_size = qkv.shape[0]
            seqlen = qkv.shape[1]
            if key_padding_mask is None:
                qkv = rearrange(qkv, 'b s ... -> (b s) ...')
                max_s = seqlen
                cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                          device=qkv.device)
                output = flash_attn_varlen_qkvpacked_func(
                    qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal
                )
                output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            else:
                nheads = qkv.shape[-2]
                x = rearrange(qkv, 'b s three h d -> b s (three h d)')
                x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
                x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
                output_unpad = flash_attn_varlen_qkvpacked_func(
                    x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal
                )
                output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
                                             indices, batch_size, seqlen),
                                   'b s (h d) -> b s h d', h=nheads)
        else:
            assert max_s is not None
            output = flash_attn_varlen_qkvpacked_func(
                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                softmax_scale=self.softmax_scale, causal=causal
            )

        return output, None

# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
    """
    t_size: int of the temporal size
    return:
    pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[0]
    )  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[1]
    )  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
    if pos_name in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 4 frames for pretraining
        new_t_size = model.T
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed


def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8):
    # interpolate position embedding
    for pos_name in ['pos_embed', 'clip_pos_embed']:
        if pos_name in checkpoint_model:
            pos_embed_checkpoint = checkpoint_model[pos_name]
            embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
            num_patches = model.patch_embed.num_patches # 
            num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

            # we use 8 frames for pretraining
            # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
            new_t_size = model.num_frames // model.tubelet_size
            # height (== width) for the checkpoint position embedding
            orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
            # height (== width) for the new position embedding
            new_size = int((num_patches // (new_t_size))** 0.5)
            
            # class_token and dist_token are kept unchanged
            if orig_t_size != new_t_size:
                print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
                pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
                pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
                pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
                pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
                pos_embed_checkpoint = new_pos_embed

            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> BT, H, W, C -> BT, C, H, W
                pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
                # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
                pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
    
    if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model:
        raise NotImplementedError


def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8):
    pos_names = []
    for k in checkpoint_model.keys():
        if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k:
            pos_names.append(k)
    
    print(f"pos names list for interpolating: {pos_names}")

    assert len(pos_names) > 0, checkpoint_model.keys()

    if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys():
        raise NotImplementedError
    
    # interpolate position embedding
    for pos_name in pos_names:

        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 8 frames for pretraining
        # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
        new_t_size = model.num_frames // model.tubelet_size
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            print(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            

def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    t_size: int of the temporal size
    return:
    pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    assert embed_dim % 4 == 0
    embed_dim_spatial = embed_dim // 4 * 3
    embed_dim_temporal = embed_dim // 4

    # spatial
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
        embed_dim_spatial, grid
    )

    # temporal
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
        embed_dim_temporal, grid_t
    )

    # concate: [T, H, W] order
    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(
        pos_embed_temporal, grid_size**2, axis=1
    )  # [T, H*W, D // 4]
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(
        pos_embed_spatial, t_size, axis=0
    )  # [T, H*W, D // 4 * 3]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
    pos_embed = pos_embed.reshape([-1, embed_dim])  # [T*H*W, D]

    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps
    
    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)
    

class PatchEmbed(nn.Module):
    """ 3D Image to Patch Embedding
    """
    
    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, 
            num_frames=8, tubelet_size=1, norm_layer=None
        ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (
            num_frames // tubelet_size, 
            img_size[0] // patch_size[0], 
            img_size[1] // patch_size[1]
        ) # (T, H, W)
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        self.num_img_patches = self.grid_size[1] * self.grid_size[2]

        self.proj = nn.Conv3d(
            in_channels=in_chans, out_channels=embed_dim, 
            kernel_size=(tubelet_size, patch_size[0], patch_size[1]), 
            stride=(tubelet_size, patch_size[0], patch_size[1])
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
    
    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(3).permute(0, 2, 3, 1)  # B x C x T x HW => B x T x HW x C
        x = self.norm(x)
        return x
    

class CrossAttention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, out_dim=None):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim
        
        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)
        
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None
        
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)
    
    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]
        
        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias
        
        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)  # (B, N_head, N_q, dim)
        
        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)
        
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        
        return x


class AttentiveBlock(nn.Module):
    
    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
        super().__init__()
        
        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
            proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
        
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
    
    def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)
        
        return x
    
    
class AttentionPoolingBlock(AttentiveBlock):
    
    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
        x = x.squeeze(1)
        return x
    
    
class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))
        self.force_fp32 = force_fp32
    
    @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x):
        if self.force_fp32:
            output_type = x.dtype
            out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
            return out.to(dtype=output_type)
        else:
            out = x.mul_(self.gamma) if self.inplace else x * self.gamma
            return out


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
                 causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        
        self.use_flash_attn = use_flash_attn
        if use_flash_attn:
            self.causal = causal
            self.inner_attn = FlashAttention(attention_dropout=attn_drop)
        
        self.qk_normalization = qk_normalization
        self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def _naive_attn(self, x):
        B, N, C = x.shape
        # print(x.shape, torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
        
        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
            k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
        
        attn = ((q * self.scale) @ k.transpose(-2, -1))
        # attn = attn - attn.max(-1)[0].unsqueeze(-1)  # in case of overflow for fp16
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        # print(torch.cuda.memory_allocated(), torch.cuda.memory_allocated())
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
    
    def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
        
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
        
        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            if self.use_fused_rmsnorm:
                q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
                k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
            else:
                q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
                k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)
        
        context, _ = self.inner_attn(
            qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
        )
        outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
        outs = self.proj_drop(outs)
        return outs
    
    def forward(self, x):
        x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
                 bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x
    
    
class Block(nn.Module):
    
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
            fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
            use_fused_rmsnorm=False):
        super().__init__()
        
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
                              use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
                              qk_normalization=qk_normalization,
                              use_fused_rmsnorm=use_fused_rmsnorm)
        self.ls1 = LayerScale(dim, init_values=init_values,
                              force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        if use_fused_mlp:
            self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
        else:
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.ls2 = LayerScale(dim, init_values=init_values,
                              force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.with_cp = with_cp
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def forward(self, x, residual=None):
        
        def _inner_forward(x, residual=None):
            if self.use_fused_rmsnorm:
                x, residual = self.norm1(x, residual)
                x = self.drop_path1(self.ls1(self.attn(x)))
                x, residual = self.norm2(x, residual)
                x = self.drop_path2(self.ls2(self.mlp(x)))
                return x, residual
            else:
                assert residual is None
                x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
                x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
                return x
        
        if self.with_cp:
            return checkpoint.checkpoint(_inner_forward, x, residual)
        else:
            return _inner_forward(x, residual=residual)


class Linear_Decoder(nn.Module):
    def __init__(self, in_channels=1408, out_channels=3200, 
                 norm_layer=nn.LayerNorm, clip_norm_type='l2'):
        super().__init__()
        self.clip_norm_type = clip_norm_type

        self.head = nn.Linear(in_channels, out_channels)
        self.norm =  norm_layer(out_channels)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        x = self.norm(self.head(x))

        if self.clip_norm_type == 'l2':
            x = x / x.norm(dim=-1, keepdim=True)
        elif self.clip_norm_type == 'none':
            pass
        else:
            raise NotImplementedError

        return x
    
        
class PretrainInternVideo2(nn.Module):
    def __init__(
            self,
            in_chans: int = 3,
            patch_size: int = 14,
            img_size: int = 224,
            qkv_bias: bool = False,
            drop_path_rate: float = 0.25,
            embed_dim: int = 1408,
            num_heads: int = 16,
            mlp_ratio: float = 48/11,
            init_values: float = 1e-5,
            qk_normalization: bool = True,
            depth: int = 40,
            use_flash_attn: bool = True,
            use_fused_rmsnorm: bool = True,
            use_fused_mlp: bool = True,
            fused_mlp_heuristic: int = 1,
            attn_pool_num_heads: int = 16,
            clip_embed_dim: int = 768,
            layerscale_no_force_fp32: bool = False,
            num_frames: int = 8,
            tubelet_size: int = 1,
            sep_pos_embed: bool = False,
            sep_image_video_pos_embed: bool = False,
            use_checkpoint: bool = False,
            checkpoint_num: int = 0,
            # for unmasked teacher
            clip_teacher_embed_dim: int = 3200,
            clip_teacher_final_dim: int = 768, # if 0, not distill final features
            clip_norm_type: str = 'l2',
            clip_return_layer: int = 1,
            clip_student_return_interval: int = 1,
        ):
        super().__init__()
        
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, 'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent'
        
        self.use_flash_attn = use_flash_attn
        self.embed_dim = embed_dim

        self.depth = depth
        self.clip_norm_type = clip_norm_type
        self.return_index = []
        for i in range(clip_return_layer):
            self.return_index.append(depth - int(i * clip_student_return_interval) - 1)
        
        if use_fused_rmsnorm:
            norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
        else:
            norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
        self.norm_layer_for_blocks = norm_layer_for_blocks
        self.patch_embed = PatchEmbed(
            img_size, patch_size, in_chans, embed_dim,
            num_frames=num_frames, tubelet_size=tubelet_size,
        )
        num_patches = self.patch_embed.num_patches
        num_img_patches = self.patch_embed.num_img_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        
        # stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
        self.sep_pos_embed = sep_pos_embed
        self.sep_image_video_pos_embed = sep_image_video_pos_embed
        if sep_pos_embed:
            raise NotImplementedError
        else:
            if sep_image_video_pos_embed:
                self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
                self.img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
                # for CLIP decoder
                self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
                self.clip_img_pos_embed = nn.Parameter(torch.zeros(1, num_img_patches + 1, embed_dim))
            else:
                self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
                self.clip_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        # choose which layer to use checkpoint
        with_cp_list = [False] * depth
        if use_checkpoint:
            for idx in range(depth):
                if idx < checkpoint_num:
                    with_cp_list[idx] = True
        
        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
                  norm_layer=norm_layer_for_blocks,
                  drop_path=dpr[i], init_values=init_values, attn_drop=0.,
                  use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
                  fused_mlp_heuristic=fused_mlp_heuristic,
                  with_cp=with_cp_list[i],
                  qk_normalization=qk_normalization,
                  layerscale_no_force_fp32=layerscale_no_force_fp32,
                  use_fused_rmsnorm=use_fused_rmsnorm)
            for i in range(depth)])
        self.clip_projector = AttentionPoolingBlock(
            dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
            drop=0., attn_drop=0., norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim)
        
        # CLIP decoder
        self.clip_decoder = nn.ModuleList([
            Linear_Decoder(
                in_channels=embed_dim, 
                out_channels=clip_teacher_embed_dim, 
                norm_layer=partial(nn.LayerNorm, eps=1e-5), 
                clip_norm_type=clip_norm_type
            ) for _ in range(clip_return_layer)
        ])
        self.final_clip_decoder = nn.Identity()
        if clip_teacher_final_dim > 0:
            self.final_clip_decoder = Linear_Decoder(
                in_channels=clip_embed_dim, 
                out_channels=clip_teacher_final_dim, 
                norm_layer=partial(nn.LayerNorm, eps=1e-5), 
                clip_norm_type=clip_norm_type
            )
        
        self.init_pos_embed()
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()

    def init_pos_embed(self):
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            # trunc_normal_(self.pos_embed, std=.02)
            # trunc_normal_(self.clip_pos_embed, std=.02)
            pos_embed = get_3d_sincos_pos_embed(
                self.pos_embed.shape[-1], 
                self.patch_embed.grid_size[1], # height & weight
                self.patch_embed.grid_size[0], # t_size
                cls_token=True
            )
            self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
            self.clip_pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
            
            if self.sep_image_video_pos_embed:
                img_pos_embed = get_3d_sincos_pos_embed(
                    self.pos_embed.shape[-1], 
                    self.patch_embed.grid_size[1], # height & weight
                    1,
                    cls_token=True
                )
                self.img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))
                self.clip_img_pos_embed.data.copy_(torch.from_numpy(img_pos_embed).float().unsqueeze(0))

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)
    
    @property
    def dtype(self):
        return self.patch_embed.proj.weight.dtype

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'pos_embed', 
            'pos_embed_spatial', 
            'pos_embed_temporal', 
            'pos_embed_cls',
            'img_pos_embed',
            'cls_token',
            'clip_pos_embed', 
            'clip_pos_embed_spatial', 
            'clip_pos_embed_temporal', 
            'clip_pos_embed_cls',
            'clip_img_pos_embed'
        }
    
    # @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x, mask=None, use_image=False, x_vis_return_idx=-1, x_vis_only=False):
        x = self.patch_embed(x.type(self.dtype))
        # print(f"x.shape: {x.shape} x.dtype: {x.dtype}, model.dtype: {self.dtype}")
        B, T, L, C = x.shape  # T: temporal; L: spatial
        x = x.view([B, T * L, C])

        # append cls token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add pos_embed
        if self.sep_pos_embed:
            raise NotImplementedError
        else:
            if use_image:
                if self.sep_image_video_pos_embed:
                    pos_embed = self.img_pos_embed
                else:
                    # (1, num_img_patches + 1, embed_dim)
                    # print('origin pos_embed.shape:', self.pos_embed.shape)
                    cls_pos_embed = self.pos_embed[:, 0:1, :]
                    # print('cls_pos_embed.shape:', cls_pos_embed.shape)

                    img_pos_embed = self.pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
                    # print('img_pos_embed.shape:', img_pos_embed.shape)

                    pos_embed = torch.cat([cls_pos_embed, img_pos_embed], dim=1)
                    # print('final img_pos_embed.shape:', pos_embed.shape)
            else:
                pos_embed = self.pos_embed
        x = x + pos_embed

        # mask tokens, ~mask means visible
        if mask is not None:
            x = x[~mask].reshape(B, -1, C) 
        else:
            x = x.reshape(B, -1, C) 

        residual = None
        x_clip = []
        for idx, blk in enumerate(self.blocks):
            if isinstance(x, tuple) and len(x) == 2:
                x, residual = x
            # print(f"\033[31m这是{idx}, {x.shape}\033[0m")
            x = blk(x, residual=residual)
            # return intermediate features
            if idx in self.return_index:
                if isinstance(x, tuple) and len(x) == 2:
                    tmp_x, tmp_residual = x
                    if residual is not None:
                        x_clip.append(tmp_x + tmp_residual)
                else:
                    x_clip.append(x)
            if idx == (self.depth + x_vis_return_idx):
                # print(f'idx = {idx} len(self.blocks)={len(self.blocks)}')
                break

        if isinstance(x, tuple) and len(x) == 2:
            x, residual = x
            if residual is not None:
                x = x + residual
        
        x_vis = x
        if x_vis_only:
            return x_vis
        
        x_pool_vis = self.clip_projector(x_vis) 
        x_align = self.final_clip_decoder(x_pool_vis)

        # align CLIP
        x_clip = torch.stack(x_clip)
        K, B, _, C_CLIP = x_clip.shape
        # add pos_embed
        if self.sep_pos_embed: 
            raise NotImplementedError
        else:
            if use_image:
                if self.sep_image_video_pos_embed:
                    clip_pos_embed = self.clip_img_pos_embed
                else:
                    # (1, num_img_patches + 1, embed_dim)
                    # print('origin pos_embed.shape:', self.pos_embed.shape)
                    clip_cls_pos_embed = self.clip_pos_embed[:, 0:1, :]
                    # print('cls_pos_embed.shape:', cls_pos_embed.shape)

                    clip_img_pos_embed = self.clip_pos_embed[:, 1:, :].view(1, self.num_frames, self.patch_embed.num_patches // self.num_frames, self.embed_dim).mean(dim=1)
                    # print('img_pos_embed.shape:', img_pos_embed.shape)

                    clip_pos_embed = torch.cat([clip_cls_pos_embed, clip_img_pos_embed], dim=1)
                    # print('final img_pos_embed.shape:', pos_embed.shape)

            else:
                clip_pos_embed = self.clip_pos_embed
        
        clip_pos_embed = clip_pos_embed.repeat(B, 1, 1)
        if mask is not None:
            x_clip = x_clip + clip_pos_embed[~mask].view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1)
        else:
            x_clip = x_clip + clip_pos_embed.view(B, -1, C_CLIP).unsqueeze(0).repeat(K, 1, 1, 1)
        
        # CLIP decoder
        x_clip_align = []
        for idx, clip_decoder in enumerate(self.clip_decoder):
            x_clip_align.append(clip_decoder(x_clip[idx]))
        x_clip_align = torch.stack(x_clip_align)
        
        return x_vis, x_pool_vis, x_clip_align, x_align
    

def pretrain_internvideo2_1b_patch14_224(config):
    model = PretrainInternVideo2(
        in_chans=3, img_size=224, patch_size=14,
        embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11,
        clip_embed_dim=config.vision_encoder.clip_embed_dim,
        attn_pool_num_heads=16, qkv_bias=False,
        drop_path_rate=0.25,
        init_values=0.00001,
        qk_normalization=True,
        use_flash_attn=config.vision_encoder.use_flash_attn,
        use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm,
        use_fused_mlp=config.vision_encoder.use_fused_mlp,
        fused_mlp_heuristic=1,
        layerscale_no_force_fp32=False,
        num_frames=config.vision_encoder.num_frames,
        tubelet_size=config.vision_encoder.tubelet_size,
        sep_pos_embed=False,
        sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
        use_checkpoint=config.vision_encoder.use_checkpoint,
        checkpoint_num=config.vision_encoder.checkpoint_num,
        clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim,
        clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim,
        clip_norm_type=config.vision_encoder.clip_norm_type,
        clip_return_layer=config.vision_encoder.clip_return_layer,
        clip_student_return_interval=config.vision_encoder.clip_student_return_interval,
    )
        
    return model


def pretrain_internvideo2_6b_patch14_224(config):
    model = PretrainInternVideo2(
        in_chans=3, img_size=224, patch_size=14,
        embed_dim=3200, depth=48, num_heads=25, mlp_ratio=4,
        clip_embed_dim=config.vision_encoder.clip_embed_dim,
        attn_pool_num_heads=16, qkv_bias=False,
        drop_path_rate=0.3,
        init_values=0.00001,
        qk_normalization=True,
        use_flash_attn=config.vision_encoder.use_flash_attn,
        use_fused_rmsnorm=config.vision_encoder.use_fused_rmsnorm,
        use_fused_mlp=config.vision_encoder.use_fused_mlp,
        fused_mlp_heuristic=1,
        layerscale_no_force_fp32=False,
        num_frames=config.vision_encoder.num_frames,
        tubelet_size=config.vision_encoder.tubelet_size,
        sep_pos_embed=False,
        sep_image_video_pos_embed=config.vision_encoder.sep_image_video_pos_embed,
        use_checkpoint=config.vision_encoder.use_checkpoint,
        checkpoint_num=config.vision_encoder.checkpoint_num,
        clip_teacher_embed_dim=config.vision_encoder.clip_teacher_embed_dim,
        clip_teacher_final_dim=config.vision_encoder.clip_teacher_final_dim,
        clip_norm_type=config.vision_encoder.clip_norm_type,
        clip_return_layer=config.vision_encoder.clip_return_layer,
        clip_student_return_interval=config.vision_encoder.clip_student_return_interval,
    )
    
    return model


from dataclasses import dataclass
from typing import Tuple, Optional, List
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import (PreTrainedModel,
                                         apply_chunking_to_forward,
                                         find_pruneable_heads_and_indices,
                                         prune_linear_layer)
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    MaskedLMOutput,
    )
from torch import Tensor, device
from torch.nn import CrossEntropyLoss


class BertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`BertModel`] or a [`TFBertModel`]. It is used to
    instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the BERT
    [bert-base-uncased](https://huggingface.co/bert-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import BertModel, BertConfig

    >>> # Initializing a BERT bert-base-uncased style configuration
    >>> configuration = BertConfig()

    >>> # Initializing a model from the bert-base-uncased style configuration
    >>> model = BertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "bert"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        position_embedding_type="absolute",
        use_cache=True,
        classifier_dropout=None,
        cross_module="ca",
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.use_cache = use_cache
        self.classifier_dropout = classifier_dropout
        self.cross_module = cross_module


def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
    """Load tf checkpoints in a pytorch model."""
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split("/")
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(
            n
            in [
                "adam_v",
                "adam_m",
                "AdamWeightDecayOptimizer",
                "AdamWeightDecayOptimizer_1",
                "global_step",
            ]
            for n in name
        ):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
                scope_names = re.split(r"_(\d+)", m_name)
            else:
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
                pointer = getattr(pointer, "bias")
            elif scope_names[0] == "output_weights":
                pointer = getattr(pointer, "weight")
            elif scope_names[0] == "squad":
                pointer = getattr(pointer, "classifier")
            else:
                try:
                    pointer = getattr(pointer, scope_names[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
            if len(scope_names) >= 2:
                num = int(scope_names[1])
                pointer = pointer[num]
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
            array = np.transpose(array)
        try:
            assert (
                pointer.shape == array.shape
            ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
        )
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size
        )
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
        )
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")

        self.config = config

    def forward(
        self,
        input_ids=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        past_key_values_length=0,
    ):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[
                :, past_key_values_length : seq_length + past_key_values_length
            ]

        if token_type_ids is None:
            token_type_ids = torch.zeros(
                input_shape, dtype=torch.long, device=self.position_ids.device
            )

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
    def __init__(self, config, is_cross_attention):
        super().__init__()
        self.config = config
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
            config, "embedding_size"
        ):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        if is_cross_attention:
            self.key = nn.Linear(config.encoder_width, self.all_head_size)
            self.value = nn.Linear(config.encoder_width, self.all_head_size)
        else:
            self.key = nn.Linear(config.hidden_size, self.all_head_size)
            self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        if (
            self.position_embedding_type == "relative_key"
            or self.position_embedding_type == "relative_key_query"
        ):
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(
                2 * config.max_position_embeddings - 1, self.attention_head_size
            )
        self.save_attention = False

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def save_attention_map(self, attention_map):
        self.attention_map = attention_map

    def get_attention_map(self):
        return self.attention_map

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if (
            self.position_embedding_type == "relative_key"
            or self.position_embedding_type == "relative_key_query"
        ):
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(-1, 1)
            position_ids_r = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(
                distance + self.max_position_embeddings - 1
            )
            positional_embedding = positional_embedding.to(
                dtype=query_layer.dtype
            )  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                relative_position_scores_key = torch.einsum(
                    "bhrd,lrd->bhlr", key_layer, positional_embedding
                )
                attention_scores = (
                    attention_scores
                    + relative_position_scores_query
                    + relative_position_scores_key
                )

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        if is_cross_attention and self.save_attention:
            self.save_attention_map(attention_probs)
            attention_probs.register_hook(self.save_attn_gradients)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs_dropped = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs_dropped = attention_probs_dropped * head_mask

        context_layer = torch.matmul(attention_probs_dropped, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # added `attention_scores` to return tuple
        outputs = (
            (context_layer, attention_probs, attention_scores)
            if output_attentions
            else (context_layer,)
        )

        outputs = outputs + (past_key_value,)
        return outputs


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False):
        super().__init__()

        self.self = BertSelfAttention(config, is_cross_attention)

        self.output = BertSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads,
            self.self.num_attention_heads,
            self.self.attention_head_size,
            self.pruned_heads,
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        # add attentions if we output them
        outputs = (attention_output,) + self_outputs[1:]
        return outputs  # (context_layer, attention_probs, attention_scores, past_key_value,)


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
    def __init__(self, config, layer_num):
        super().__init__()
        self.config = config
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)

        self.has_cross_attention = layer_num >= config.fusion_layer
        if self.has_cross_attention:
            self.crossattention = BertAttention(config, is_cross_attention=True)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )  # (context_layer, attention_probs, attention_scores, past_key_value,)
        attention_output = self_attention_outputs[0]

        outputs = self_attention_outputs[1:-1]
        present_key_value = self_attention_outputs[-1]

        if self.has_cross_attention:
            assert (
                encoder_hidden_states is not None
            ), "encoder_hidden_states must be given for cross-attention layers"

            if type(encoder_hidden_states) == list:
                cross_attention_outputs = self.crossattention(
                    attention_output,
                    attention_mask,
                    head_mask,
                    encoder_hidden_states[
                        (self.layer_num - self.config.fusion_layer)
                        % len(encoder_hidden_states)
                    ],
                    encoder_attention_mask[
                        (self.layer_num - self.config.fusion_layer)
                        % len(encoder_hidden_states)
                    ],
                    output_attentions=output_attentions,
                )
                attention_output = cross_attention_outputs[0]
                outputs = outputs + cross_attention_outputs[1:-1]

            else:
                cross_attention_outputs = self.crossattention(
                    attention_output,
                    attention_mask,
                    head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions=output_attentions,
                )  # (context_layer, attention_probs, attention_scores, past_key_value,)
                attention_output = cross_attention_outputs[0]
                # add cross attentions if we output attention weights
                outputs = outputs + cross_attention_outputs[1:-1]
        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk,
            self.chunk_size_feed_forward,
            self.seq_len_dim,
            attention_output,
        )
        outputs = (layer_output,) + outputs

        outputs = outputs + (present_key_value,)

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class BertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [BertLayer(config, i) for i in range(config.num_hidden_layers)]
        )

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
        mode="multi_modal",
        normalize_attention=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        # all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_cross_attentions = () if output_attentions else None

        next_decoder_cache = () if use_cache else None

        if (
            mode == "text" or mode == "temporal"
        ):  # temporal is added and used for temporal att module.
            start_layer = 0
            output_layer = self.config.fusion_layer

        elif mode == "fusion":
            start_layer = self.config.fusion_layer
            output_layer = self.config.num_hidden_layers

        elif mode == "multi_modal":
            start_layer = 0
            output_layer = self.config.num_hidden_layers

        for i in range(start_layer, output_layer):
            layer_module = self.layer[i]
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                if use_cache:
                    print(
                        "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
                        "`use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    use_reentrant=False,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )  # (context_layer, attention_probs, attention_scores, past_key_value,)
            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                # whether to output normalized attention,
                # note for unnormalized attention, there is a mask added
                offset = int(normalize_attention)
                # all_self_attentions = all_self_attentions + (layer_outputs[1], )
                all_self_attentions = all_self_attentions + (layer_outputs[2 - offset],)
                if hasattr(layer_module, "crossattention"):
                    # all_cross_attentions = all_cross_attentions + (layer_outputs[3], )
                    all_cross_attentions = all_cross_attentions + (layer_outputs[4 - offset],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BertConfig
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
            

class BertModel(BertPreTrainedModel):
    """
    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in `Attention is
    all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
    argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
    input to the forward pass.
    """

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = BertEmbeddings(config)

        self.encoder = BertEncoder(config)

        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_extended_attention_mask(
        self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
    ) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = (
                    seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
                    <= seq_ids[None, :, None]
                )
                # in case past_key_values are used we need to add a prefix ones mask to the causal mask
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)

                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    causal_mask = torch.cat(
                        [
                            torch.ones(
                                (batch_size, seq_length, prefix_seq_len),
                                device=device,
                                dtype=causal_mask.dtype,
                            ),
                            causal_mask,
                        ],
                        axis=-1,
                    )

                extended_attention_mask = (
                    causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
                )
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
                "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                    input_shape, attention_mask.shape
                )
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(
            dtype=self.dtype
        )  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        is_decoder=False,
        mode="multi_modal",
        normalize_attention=True,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
            (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
            instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`):
            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
            decoding (see :obj:`past_key_values`).
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            batch_size, seq_length = input_shape
            device = input_ids.device
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size, seq_length = input_shape
            device = inputs_embeds.device
        elif encoder_embeds is not None:
            input_shape = encoder_embeds.size()[:-1]
            batch_size, seq_length = input_shape
            device = encoder_embeds.device
        else:
            raise ValueError(
                "You have to specify either input_ids or inputs_embeds or encoder_embeds"
            )

        # past_key_values_length
        past_key_values_length = (
            past_key_values[0][0].shape[2] if past_key_values is not None else 0
        )

        if attention_mask is None:
            attention_mask = torch.ones(
                ((batch_size, seq_length + past_key_values_length)), device=device
            )
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            attention_mask, input_shape, device, is_decoder
        )

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if encoder_hidden_states is not None:
            if type(encoder_hidden_states) == list:
                encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
                    0
                ].size()
            else:
                encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)

            if type(encoder_attention_mask) == list:
                encoder_extended_attention_mask = [
                    self.invert_attention_mask(mask) for mask in encoder_attention_mask
                ]
            elif encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
                encoder_extended_attention_mask = self.invert_attention_mask(
                    encoder_attention_mask
                )
            else:
                encoder_extended_attention_mask = self.invert_attention_mask(
                    encoder_attention_mask
                )
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        if encoder_embeds is None:
            embedding_output = self.embeddings(
                input_ids=input_ids,
                position_ids=position_ids,
                token_type_ids=token_type_ids,
                inputs_embeds=inputs_embeds,
                past_key_values_length=past_key_values_length,
            )
        else:
            embedding_output = encoder_embeds

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            mode=mode,
            normalize_attention=normalize_attention,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


@dataclass
class MaskedLMOutputWithDistill(MaskedLMOutput):
    loss_aux: Optional[torch.FloatTensor] = None
    loss_distill: Optional[torch.FloatTensor] = None
    

class BertForMaskedLM(BertPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        self.bert = BertModel(config, add_pooling_layer=False)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def tie_aux_decoder_weights(self, module, aux_modules):
        """Tie decoder weights of all `aux_modules` to `module`, (not bias)"""
        for m in aux_modules:
            m.predictions.decoder.weight = module.predictions.decoder.weight

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        is_decoder=False,
        mode="multi_modal",
        normalize_attention=True,
        soft_labels=None,
        alpha=0,
        return_logits=False,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_embeds=encoder_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            is_decoder=is_decoder,
            mode=mode,
            normalize_attention=normalize_attention,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        if return_logits:
            return prediction_scores

        masked_lm_loss = None
        masked_lm_loss_aux = 0.0
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
            )

        if soft_labels is not None:
            loss_distill = -torch.sum(
                F.log_softmax(prediction_scores, dim=1) * soft_labels, dim=-1
            )
            loss_distill = loss_distill[labels != -100].mean()
            masked_lm_loss = (1 - alpha) * masked_lm_loss + alpha * loss_distill

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        # changed from MaskedLMOutput to MaskedLMOutputWithDistill
        return MaskedLMOutputWithDistill(
            loss=masked_lm_loss,
            loss_aux=masked_lm_loss_aux,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape
        effective_batch_size = input_shape[0]

        #  add a dummy token
        assert (
            self.config.pad_token_id is not None
        ), "The PAD token should be defined for generation"
        attention_mask = torch.cat(
            [attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1
        )
        dummy_token = torch.full(
            (effective_batch_size, 1),
            self.config.pad_token_id,
            dtype=torch.long,
            device=input_ids.device,
        )
        input_ids = torch.cat([input_ids, dummy_token], dim=1)

        return {"input_ids": input_ids, "attention_mask": attention_mask}
    

def build_bert(model_config, pretrain, checkpoint, encoder_width=None):
    """build text encoder.

    Args:
        model_config (dict): model config.
        pretrain (bool): Whether to do pretrain or finetuning.
        checkpoint (bool): whether to do gradient_checkpointing.

    Returns: TODO

    """
    bert_config = BertConfig.from_json_file(model_config.text_encoder.config)
    if encoder_width is None:
        bert_config.encoder_width = model_config.vision_encoder.d_model
    else:
        bert_config.encoder_width = encoder_width
        
    bert_config.gradient_checkpointing = checkpoint
    bert_config.fusion_layer = model_config.text_encoder.fusion_layer

    if not model_config.multimodal.enable:
        bert_config.fusion_layer = bert_config.num_hidden_layers

    if pretrain:
        try:
            text_encoder, loading_info = BertForMaskedLM.from_pretrained(
                model_config.text_encoder.pretrained,
                config=bert_config,
                output_loading_info=True, 
                local_files_only=True
            )
        except:
            text_encoder, loading_info = BertForMaskedLM.from_pretrained(
                model_config.text_encoder.pretrained,
                config=bert_config,
                output_loading_info=True, 
                local_files_only=False
            )
    else:
        try:
            text_encoder, loading_info = BertModel.from_pretrained(
                model_config.text_encoder.pretrained,
                config=bert_config,
                add_pooling_layer=False,
                output_loading_info=True,
                local_files_only=True
            )
        except:
            text_encoder, loading_info = BertModel.from_pretrained(
                model_config.text_encoder.pretrained,
                config=bert_config,
                add_pooling_layer=False,
                output_loading_info=True,
                local_files_only=False
            )

    return text_encoder


def get_sim(
    vision_proj: torch.Tensor,
    text_proj: torch.Tensor,
    temp=1.0,
    agg_method="mean",
):
    """calculate pair-wise video-text similarity.

    Args:
        vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C].
        text_proj (torch.Tensor): The text representation. Shape: [B,C].
        temp (torch.Tensor): The temperature. Shape: [].

    Returns: The similarity between video and text. Shape: [B,B].

    """
    vision_proj = F.normalize(vision_proj, dim=-1)
    text_proj = F.normalize(text_proj, dim=-1)
    if vision_proj.ndim == 3:
        sim_v2t = torch.einsum("mld,nd->mln", vision_proj, text_proj) / temp  # [B, L, B]
        sim_t2v = torch.einsum("nd,mld->nlm", text_proj, vision_proj) / temp  # [B, L, B]
        if agg_method == "mean":
            sim_v2t = sim_v2t.mean(1)
            sim_t2v = sim_t2v.mean(1)
        elif agg_method == "max":
            sim_v2t = sim_v2t.max(1)[0]
            sim_t2v = sim_t2v.max(1)[0]
    elif text_proj.ndim == 3:
        sim_v2t = torch.einsum("nd,mld->nlm", vision_proj, text_proj) / temp  # [B, L, B]
        sim_t2v = torch.einsum("nld,md->nlm", text_proj, vision_proj) / temp  # [B, L, B]
        if agg_method == "mean":
            sim_v2t = sim_v2t.mean(1)
            sim_t2v = sim_t2v.mean(1)
        elif agg_method == "max":
            sim_v2t = sim_v2t.max(1)[0]
            sim_t2v = sim_t2v.max(1)[0]
    else:
        sim_v2t = vision_proj @ text_proj.T / temp
        sim_t2v = sim_v2t.T
    
    return sim_v2t, sim_t2v


VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
        "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
        "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
        "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
        "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
        "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
        "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
        "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
        "bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
        "bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
        "bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
        "bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
        "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
        "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
        "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
        "TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
        "TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
        "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "bert-base-uncased": 512,
    "bert-large-uncased": 512,
    "bert-base-cased": 512,
    "bert-large-cased": 512,
    "bert-base-multilingual-uncased": 512,
    "bert-base-multilingual-cased": 512,
    "bert-base-chinese": 512,
    "bert-base-german-cased": 512,
    "bert-large-uncased-whole-word-masking": 512,
    "bert-large-cased-whole-word-masking": 512,
    "bert-large-uncased-whole-word-masking-finetuned-squad": 512,
    "bert-large-cased-whole-word-masking-finetuned-squad": 512,
    "bert-base-cased-finetuned-mrpc": 512,
    "bert-base-german-dbmdz-cased": 512,
    "bert-base-german-dbmdz-uncased": 512,
    "TurkuNLP/bert-base-finnish-cased-v1": 512,
    "TurkuNLP/bert-base-finnish-uncased-v1": 512,
    "wietsedv/bert-base-dutch-cased": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "bert-base-uncased": {"do_lower_case": True},
    "bert-large-uncased": {"do_lower_case": True},
    "bert-base-cased": {"do_lower_case": False},
    "bert-large-cased": {"do_lower_case": False},
    "bert-base-multilingual-uncased": {"do_lower_case": True},
    "bert-base-multilingual-cased": {"do_lower_case": False},
    "bert-base-chinese": {"do_lower_case": False},
    "bert-base-german-cased": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking": {"do_lower_case": False},
    "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
    "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
    "bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
    "bert-base-german-dbmdz-cased": {"do_lower_case": False},
    "bert-base-german-dbmdz-uncased": {"do_lower_case": True},
    "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
    "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
    "wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}


import collections
import unicodedata
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace

def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


class BasicTokenizer(object):
    """
    Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
    Args:
        do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to lowercase the input when tokenizing.
        never_split (:obj:`Iterable`, `optional`):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            :obj:`do_basic_tokenize=True`
        tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to tokenize Chinese characters.
            This should likely be deactivated for Japanese (see this `issue
            <https://github.com/huggingface/transformers/issues/328>`__).
        strip_accents: (:obj:`bool`, `optional`):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for :obj:`lowercase` (as in the original BERT).
    """

    def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
        if never_split is None:
            never_split = []
        self.do_lower_case = do_lower_case
        self.never_split = set(never_split)
        self.tokenize_chinese_chars = tokenize_chinese_chars
        self.strip_accents = strip_accents

    def tokenize(self, text, never_split=None):
        """
        Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
        WordPieceTokenizer.
        Args:
            **never_split**: (`optional`) list of str
                Kept for backward compatibility purposes. Now implemented directly at the base class level (see
                :func:`PreTrainedTokenizer.tokenize`) List of token not to split.
        """
        # union() returns a new set by concatenating the two sets.
        never_split = self.never_split.union(
            set(never_split)) if never_split else self.never_split
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        if self.tokenize_chinese_chars:
            text = self._tokenize_chinese_chars(text)
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if token not in never_split:
                if self.do_lower_case:
                    token = token.lower()
                    if self.strip_accents is not False:
                        token = self._run_strip_accents(token)
                elif self.strip_accents:
                    token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token, never_split))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text, never_split=None):
        """Splits punctuation on a piece of text."""
        if never_split is not None and text in never_split:
            return [text]
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if (
            (cp >= 0x4E00 and cp <= 0x9FFF)
            or (cp >= 0x3400 and cp <= 0x4DBF)  #
            or (cp >= 0x20000 and cp <= 0x2A6DF)  #
            or (cp >= 0x2A700 and cp <= 0x2B73F)  #
            or (cp >= 0x2B740 and cp <= 0x2B81F)  #
            or (cp >= 0x2B820 and cp <= 0x2CEAF)  #
            or (cp >= 0xF900 and cp <= 0xFAFF)
            or (cp >= 0x2F800 and cp <= 0x2FA1F)  #
        ):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xFFFD or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """
        Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
        tokenization using the given vocabulary.
        For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
        Args:
          text: A single token or whitespace separated tokens. This should have
            already been passed through `BasicTokenizer`.
        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens
    

class BertTokenizer(PreTrainedTokenizer):
    r"""
    Construct a BERT tokenizer. Based on WordPiece.
    This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
    Users should refer to this superclass for more information regarding those methods.
    Args:
        vocab_file (:obj:`str`):
            File containing the vocabulary.
        do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to lowercase the input when tokenizing.
        do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to do basic tokenization before WordPiece.
        never_split (:obj:`Iterable`, `optional`):
            Collection of tokens which will never be split during tokenization. Only has an effect when
            :obj:`do_basic_tokenize=True`
        unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
            The token used for padding, for example when batching sequences of different lengths.
        cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to tokenize Chinese characters.
            This should likely be deactivated for Japanese (see this `issue
            <https://github.com/huggingface/transformers/issues/328>`__).
        strip_accents: (:obj:`bool`, `optional`):
            Whether or not to strip all accents. If this option is not specified, then it will be determined by the
            value for :obj:`lowercase` (as in the original BERT).
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

    def __init__(
        self,
        vocab_file,
        do_lower_case=True,
        do_basic_tokenize=True,
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        tokenize_chinese_chars=True,
        strip_accents=None,
        **kwargs
    ):
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    vocab_file)
            )
        self.vocab = load_vocab(vocab_file)
        
        super().__init__(
            do_lower_case=do_lower_case,
            do_basic_tokenize=do_basic_tokenize,
            never_split=never_split,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            tokenize_chinese_chars=tokenize_chinese_chars,
            strip_accents=strip_accents,
            **kwargs,
        )

        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
            self.basic_tokenizer = BasicTokenizer(
                do_lower_case=do_lower_case,
                never_split=never_split,
                tokenize_chinese_chars=tokenize_chinese_chars,
                strip_accents=strip_accents,
            )
        self.wordpiece_tokenizer = WordpieceTokenizer(
            vocab=self.vocab, unk_token=self.unk_token)

    @property
    def do_lower_case(self):
        return self.basic_tokenizer.do_lower_case

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return dict(self.vocab, **self.added_tokens_encoder)

    def _tokenize(self, text):
        split_tokens = []
        if self.do_basic_tokenize:
            for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):

                # If the token is part of the never_split set
                if token in self.basic_tokenizer.never_split:
                    split_tokens.append(token)
                else:
                    split_tokens += self.wordpiece_tokenizer.tokenize(token)
        else:
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
        return split_tokens

    def _convert_token_to_id(self, token):
        """ Converts a token (str) in an id using the vocab. """
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.ids_to_tokens.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string. """
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A BERT sequence has the following format:
        - single sequence: ``[CLS] X ``
        - pair of sequences: ``[CLS] A [SEP] B [SEP]``
        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
        Returns:
            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``prepare_for_model`` method.
        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not the token list is already formatted with special tokens for the model.
        Returns:
            :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            if token_ids_1 is not None:
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formatted with special tokens for the model."
                )
            return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
        pair mask has the following format:
        ::
            0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
            | first sequence    | second sequence |
        If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
        Args:
            token_ids_0 (:obj:`List[int]`):
                List of IDs.
            token_ids_1 (:obj:`List[int]`, `optional`):
                Optional second list of IDs for sequence pairs.
        Returns:
            :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
            sequence(s).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        index = 0
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") +
                VOCAB_FILES_NAMES["vocab_file"]
            )
        else:
            vocab_file = (filename_prefix +
                          "-" if filename_prefix else "") + save_directory
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    print(
                        "Saving vocabulary to {}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!".format(
                            vocab_file)
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1
        return (vocab_file,)
    

from huggingface_hub import PyTorchModelHubMixin


def _frame_from_video(video):
    while video.isOpened():
        success, frame = video.read()
        if success:
            yield frame
        else:
            break
        
v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)
v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)
def normalize(data):
    return (data/255.0-v_mean)/v_std


def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):
    assert(len(vid_list) >= fnum)
    step = len(vid_list) // fnum
    vid_list = vid_list[::step][:fnum]
    vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list]
    vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]
    vid_tube = np.concatenate(vid_tube, axis=1)
    vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))
    vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()
    return vid_tube

def vid2tensor(path: str, fnum: int=8, target_size: tuple=(224, 224), device=torch.device('cuda')):
    video = cv2.VideoCapture(path)
    frames = [x for x in _frame_from_video(video)]
    return frames2tensor(frames, fnum, target_size, device)

def get_text_feat_dict(texts, clip, text_feat_d={}):
    for t in texts:
        feat = clip.get_txt_feat(t)
        text_feat_d[t] = feat
    return text_feat_d

def get_vid_feat(frames, vlm):
    return vlm.get_vid_features(frames)


def retrieve_text(frames, 
                  texts, 
                  model,
                  topk:int=5,
                  device=torch.device('cuda')):
    
    vlm = model.to(device)
    config = vlm.config
    
    fn = config.num_frames
    size_t = config.size_t
    frames_tensor = frames2tensor(frames, fnum=fn, target_size=(size_t, size_t), device=device)
    vid_feat = vlm.get_vid_feat(frames_tensor)

    text_feat_d = {}
    text_feat_d = get_text_feat_dict(texts, vlm, text_feat_d)
    text_feats = [text_feat_d[t] for t in texts]
    text_feats_tensor = torch.cat(text_feats, 0)
    
    probs, idxs = vlm.predict_label(vid_feat, text_feats_tensor, top=topk)

    ret_texts = [texts[i] for i in idxs.long().numpy()[0].tolist()]
    return ret_texts, probs.float().numpy()[0]


def setup_internvideo2(config):
    
    model = InternVideo2_Stage2(config=config, is_pretrain=True)

    torch.set_float32_matmul_precision('high')
    model = torch.compile(model)

    model = model.to(torch.device(config.device))
    model_without_ddp = model

    if (config.pretrained_path.strip() and (os.path.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path):
        checkpoint = torch.load(config.pretrained_path, map_location="cpu")
        try:
            if "model" in checkpoint.keys():
                state_dict = checkpoint["model"]
            else:
                state_dict = checkpoint["module"] # This is a deepspeed stage 1 model
        except:  
            state_dict = checkpoint

        # if config.get('origin_num_frames', None) is not None:
        a = len(state_dict)
        interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames)
        assert a == len(state_dict), state_dict.keys()

        msg = model_without_ddp.load_state_dict(state_dict, strict=False)
    
    model_without_ddp = model_without_ddp.to(torch.float32)
    
    return model_without_ddp.eval()


class DictToClass:
    def __init__(self, data):
        for key, value in data.items():
            key = str(key)
            if isinstance(value, dict):
                setattr(self, key, DictToClass(value))
            elif isinstance(value, list):
                setattr(self, key, [
                    DictToClass(item) if isinstance(item, dict) else item 
                    for item in value
                ])
            else:
                setattr(self, key, value)

    def __repr__(self):
        """方便调试的对象表示"""
        attrs = ', '.join(f"{k}={v!r}" for k, v in self.__dict__.items())
        return f"{self.__class__.__name__}({attrs})"


def instance2dict(obj):
    """将类实例及其嵌套属性转换为字典"""
    if isinstance(obj, (str, int, float, bool, type(None))):
        # 基本类型直接返回
        return obj
    elif isinstance(obj, dict):
        # 字典类型递归处理值
        return {k: instance2dict(v) for k, v in obj.items()}
    elif isinstance(obj, (list, tuple, set)):
        # 可迭代类型递归处理元素
        return type(obj)(instance2dict(item) for item in obj)
    elif hasattr(obj, '__dict__'):
        # 类实例处理
        result = {}
        for key, value in obj.__dict__.items():
            # 过滤私有属性(可选)
            if not key.startswith('_'):
                result[key] = instance2dict(value)
        return result
    else:
        # 其他不可序列化类型直接返回
        return str(obj)  # 或者根据需求抛出异常
    

class InternVideo2_Stage2_Config(PretrainedConfig):
    _auto_class='AutoConfig'
    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class InternVideo2_Stage2(
    PreTrainedModel,
    ):
    """docstring for InternVideo2_Stage2"""
    
    _auto_class="AutoModel"
    config_class=InternVideo2_Stage2_Config

    def __init__(self, 
                 config: InternVideo2_Stage2_Config, 
                 is_pretrain: bool=True):

        super(InternVideo2_Stage2, self).__init__(config)

        config = config.to_dict()
        self._config = DictToClass(config) if isinstance(config, dict) else config
        
        self.tokenizer = BertTokenizer.from_pretrained(self._config.model.text_encoder.pretrained, local_files_only=True, use_safetensors=True)

        self.is_pretrain = is_pretrain
        self.vision_width = self._config.model.vision_encoder.clip_embed_dim
        self.text_width = self._config.model.text_encoder.d_model
        self.embed_dim = self._config.model.embed_dim

        # create modules.
        self.vision_encoder = self.build_vision_encoder()
        self.text_encoder = self.build_text_encoder()

        self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
        self.text_proj = nn.Linear(self.text_width, self.embed_dim)

    def freeze_vision(self):
        """freeze vision encoder"""
        for p in self.vision_encoder.parameters():
            p.requires_grad = False

    def freeze_text(self):
        """freeze text encoder"""
        for p in self.text_encoder.parameters():
            p.requires_grad = False

    @property
    def dtype(self):
        return self.vision_encoder.patch_embed.proj.weight.dtype

    def encode_vision(self, 
                      image: torch.Tensor, 
                      test: bool=False):
        """encode image / videos as features.

        Args:
            image (torch.Tensor): The input images.
            test (bool): Whether testing.

        Returns: tuple.
            - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
            - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].
            - student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C].
            - clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C].

        """
        
        T = image.shape[1]
        use_image = True if T == 1 else False
        image = image.permute(0, 2, 1, 3, 4).to(self.dtype) # [B,T,C,H,W] -> [B,C,T,H,W]
        # whether save temporal dimension
        # keep_temporal=self._config.model.vision_encoder.keep_temporal
        if test:
            vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder(
                image, None, use_image)
            return vision_embeds, pooled_vision_embeds
        else:
            mask, targets_clip_middle_vis, targets_clip_final_vis = self.encode_teacher(image) 
            # if mask is not None and (self.video_mask_type != 'tube' or self.image_mask_type != 'tube'):
            #     keep_temporal = False
            # print(f"\033[31mmask is {type(mask)}\033[0m")
            vision_embeds, pooled_vision_embeds, student_output, student_output_final = self.vision_encoder(
                    image, mask, use_image)
            return vision_embeds, pooled_vision_embeds, student_output, student_output_final, targets_clip_middle_vis, targets_clip_final_vis

    def encode_text(self, 
                    text: dict):
        """encode text.
        Args:
            text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
                - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
                - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
                - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
        Returns: tuple.
            - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C].
            - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C].

        """
        text_output = self.get_text_encoder()(
            text.input_ids,
            attention_mask=text.attention_mask,
            return_dict=True,
            mode="text",
        )
        text_embeds = text_output.last_hidden_state
        pooled_text_embeds = text_embeds[:, 0]
        return text_embeds, pooled_text_embeds

    def build_vision_encoder(self):
        """build vision encoder
        Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`.

        """
        encoder_name = self._config.model.vision_encoder.name
        
        if encoder_name == 'pretrain_internvideo2_1b_patch14_224':
            vision_encoder = pretrain_internvideo2_1b_patch14_224(self._config.model)
        elif encoder_name == 'pretrain_internvideo2_6b_patch14_224':
            vision_encoder = pretrain_internvideo2_6b_patch14_224(self._config.model)
        else:
            raise ValueError(f"Not implemented: {encoder_name}")

        # parameters for mask
        img_size = self._config.model.vision_encoder.img_size
        num_frames = self._config.model.vision_encoder.num_frames
        tublet_size = self._config.model.vision_encoder.tubelet_size
        patch_size = self._config.model.vision_encoder.patch_size
        self.clip_img_size = self._config.model.vision_encoder.clip_input_resolution
        self.video_mask_type = self._config.model.vision_encoder.video_mask_type
        self.video_window_size = (num_frames // tublet_size, img_size // patch_size, img_size // patch_size)
        self.video_mask_ratio = self._config.model.vision_encoder.video_mask_ratio
        self.image_mask_type = self._config.model.vision_encoder.image_mask_type
        self.image_window_size = (1, img_size // patch_size, img_size // patch_size)
        self.image_mask_ratio = self._config.model.vision_encoder.image_mask_ratio
        
        return vision_encoder

    def build_text_encoder(self):
        """build text_encoder and possiblly video-to-text multimodal fusion encoder.
        Returns: nn.Module. The text encoder

        """
        encoder_name = self._config.model.text_encoder.name

        if "bert" in encoder_name:
            text_encoder = build_bert(
                self._config.model,
                self.is_pretrain,
                self._config.gradient_checkpointing,
            )
        else:
            raise ValueError(f"Not implemented: {encoder_name}")

        return text_encoder

    def get_text_encoder(self):
        """get text encoder, used for text and cross-modal encoding"""
        encoder = self.text_encoder
        return encoder.bert if hasattr(encoder, "bert") else encoder
    
    def get_vid_feat(self, 
                     frames: torch.Tensor):
        """get the video features for the given frames.

        Args:
            frames (torch.Tensor): The input frames. Shape: [B,T,C,H,W].

        Returns: tuple.
            - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
            - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].

        """
        with torch.no_grad():  
            _, vfeat = self.encode_vision(frames, test=True)
            vfeat = self.vision_proj(vfeat)
            vfeat /= vfeat.norm(dim=-1, keepdim=True)
        return vfeat
    
    def get_txt_feat(self, 
                     text: str):
        """get the text features for the given text."""
        with torch.no_grad():
            text = self.tokenizer(
                text, 
                padding="max_length", 
                truncation=True, 
                max_length=self._config.max_txt_l, 
                return_tensors="pt",).to(self._config.device)
            _, tfeat = self.encode_text(text)
            tfeat = self.text_proj(tfeat)
            tfeat /= tfeat.norm(dim=-1, keepdim=True)
        return tfeat
    
    def predict_label(self, 
                      vid_feat: torch.Tensor, 
                      txt_feat: torch.Tensor, 
                      top: int=5):
        label_probs = (100.0 * vid_feat @ txt_feat.T).softmax(dim=-1)
        top_probs, top_labels = label_probs.float().cpu().topk(top, dim=-1)
        return top_probs, top_labels