cuierfei commited on
Commit
0620601
1 Parent(s): 1a326b6

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -499,7 +499,7 @@ print(sess.response.text)
499
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
500
 
501
  ```shell
502
- lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --model-name Mini-InternVL-Chat-4B-V1-5 --backend pytorch --server-port 23333
503
  ```
504
 
505
  To use the OpenAI-style interface, you need to install OpenAI:
@@ -516,7 +516,7 @@ from openai import OpenAI
516
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
517
  model_name = client.models.list().data[0].id
518
  response = client.chat.completions.create(
519
- model="Mini-InternVL-Chat-4B-V1-5",
520
  messages=[{
521
  'role':
522
  'user',
 
499
  LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
500
 
501
  ```shell
502
+ lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --backend pytorch --server-port 23333
503
  ```
504
 
505
  To use the OpenAI-style interface, you need to install OpenAI:
 
516
  client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
517
  model_name = client.models.list().data[0].id
518
  response = client.chat.completions.create(
519
+ model=model_name,
520
  messages=[{
521
  'role':
522
  'user',