Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -499,7 +499,7 @@ print(sess.response.text)
|
|
499 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
500 |
|
501 |
```shell
|
502 |
-
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --
|
503 |
```
|
504 |
|
505 |
To use the OpenAI-style interface, you need to install OpenAI:
|
@@ -516,7 +516,7 @@ from openai import OpenAI
|
|
516 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
517 |
model_name = client.models.list().data[0].id
|
518 |
response = client.chat.completions.create(
|
519 |
-
model=
|
520 |
messages=[{
|
521 |
'role':
|
522 |
'user',
|
|
|
499 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
500 |
|
501 |
```shell
|
502 |
+
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --backend pytorch --server-port 23333
|
503 |
```
|
504 |
|
505 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
516 |
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
517 |
model_name = client.models.list().data[0].id
|
518 |
response = client.chat.completions.create(
|
519 |
+
model=model_name,
|
520 |
messages=[{
|
521 |
'role':
|
522 |
'user',
|