opengvlab-admin commited on
Commit
95d07f1
1 Parent(s): c9da028

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +233 -3
README.md CHANGED
@@ -1,3 +1,233 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - laion/laion2B-en
5
+ - laion/laion-coco
6
+ - laion/laion2B-multi
7
+ - kakaobrain/coyo-700m
8
+ - conceptual_captions
9
+ - wanng/wukong100m
10
+ pipeline_tag: visual-question-answering
11
+ ---
12
+
13
+ # Model Card for Mini-InternVL-Chat-2B-V1-5
14
+ <p align="center">
15
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/D60YzQBIzvoCvLRp2gZ0A.jpeg" alt="Image Description" width="300" height="300" />
16
+ </p>
17
+
18
+ > _Two interns holding hands, symbolizing the integration of InternViT and InternLM._
19
+
20
+ \[[InternVL 1.5 Technical Report](https://arxiv.org/abs/2404.16821)\] \[[CVPR Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
21
+
22
+ You can run multimodal large models using a 1080Ti now.
23
+
24
+ We are delighted to introduce the Mini-InternVL-Chat series. In the era of large language models, many researchers have started to focus on smaller language models, such as Gemma-2B, Qwen-1.8B, and InternLM2-1.8B. Inspired by their efforts, we have distilled our vision foundation model [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) down to 300M and used [InternLM2-Chat-1.8B](https://huggingface.co/internlm/internlm2-chat-1_8b) or [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) as our language model. This resulted in a small multimodal model with excellent performance.
25
+
26
+
27
+ As shown in the figure below, we adopted the same model architecture as InternVL 1.5. We simply replaced the original InternViT-6B with InternViT-300M and InternLM2-Chat-20B with InternLM2-Chat-1.8B / Phi-3-mini-128k-instruct. For training, we used the same data as InternVL 1.5 to train this smaller model. Additionally, due to the lower training costs of smaller models, we used a context length of 8K during training.
28
+
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/rDyoe66Sqev44T0wsP5Z7.png)
31
+
32
+
33
+ ## Model Details
34
+ - **Model Type:** multimodal large language model (MLLM)
35
+ - **Model Stats:**
36
+ - Architecture: [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) + MLP + [InternLM2-Chat-1.8B](https://huggingface.co/internlm/internlm2-chat-1_8b)
37
+ - Image size: dynamic resolution, max to 40 tiles of 448 x 448 (4K resolution).
38
+ - Params: 2.2B
39
+
40
+ - **Training Strategy:**
41
+ - Learnable component in the pretraining stage: ViT + MLP
42
+ - Learnable component in the finetuning stage: ViT + MLP + LLM
43
+ - For more details on training hyperparameters, take a look at our code: [pretrain]() | [finetune]()
44
+
45
+ ## Released Models
46
+
47
+ | Model | Vision Foundation Model | Release Date |Note |
48
+ | :---------------------------------------------------------:|:--------------------------------------------------------------------------: |:----------------------:| :---------------------------------- |
49
+ | InternVL-Chat-V1.5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)) | InternViT-6B-448px-V1-5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5)) |2024.04.18 | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
50
+ | InternVL-Chat-V1.2-Plus(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.21 | more SFT data and stronger |
51
+ | InternVL-Chat-V1.2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.11 | scaling up LLM to 34B |
52
+ | InternVL-Chat-V1.1(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)) |InternViT-6B-448px-V1-0(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0)) |2024.01.24 | support Chinese and stronger OCR |
53
+
54
+ ## Performance
55
+
56
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BbsilHS8PjwZwlc330_g4.png)
57
+
58
+ ## Model Usage
59
+
60
+ We provide an example code to run Mini-InternVL-Chat-2B-V1.5 using `transformers`.
61
+
62
+ You can also use our [online demo](https://internvl.opengvlab.com/) to get a quick experience of this model.
63
+
64
+ > Please use transformers==4.37.2 to ensure the model works normally.
65
+
66
+ ```python
67
+ from transformers import AutoTokenizer, AutoModel
68
+ import torch
69
+ import torchvision.transforms as T
70
+ from PIL import Image
71
+
72
+ from torchvision.transforms.functional import InterpolationMode
73
+
74
+
75
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
76
+ IMAGENET_STD = (0.229, 0.224, 0.225)
77
+
78
+
79
+ def build_transform(input_size):
80
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
81
+ transform = T.Compose([
82
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
83
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
84
+ T.ToTensor(),
85
+ T.Normalize(mean=MEAN, std=STD)
86
+ ])
87
+ return transform
88
+
89
+
90
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
91
+ best_ratio_diff = float('inf')
92
+ best_ratio = (1, 1)
93
+ area = width * height
94
+ for ratio in target_ratios:
95
+ target_aspect_ratio = ratio[0] / ratio[1]
96
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
97
+ if ratio_diff < best_ratio_diff:
98
+ best_ratio_diff = ratio_diff
99
+ best_ratio = ratio
100
+ elif ratio_diff == best_ratio_diff:
101
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
102
+ best_ratio = ratio
103
+ return best_ratio
104
+
105
+
106
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
107
+ orig_width, orig_height = image.size
108
+ aspect_ratio = orig_width / orig_height
109
+
110
+ # calculate the existing image aspect ratio
111
+ target_ratios = set(
112
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
113
+ i * j <= max_num and i * j >= min_num)
114
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
115
+
116
+ # find the closest aspect ratio to the target
117
+ target_aspect_ratio = find_closest_aspect_ratio(
118
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
119
+
120
+ # calculate the target width and height
121
+ target_width = image_size * target_aspect_ratio[0]
122
+ target_height = image_size * target_aspect_ratio[1]
123
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
124
+
125
+ # resize the image
126
+ resized_img = image.resize((target_width, target_height))
127
+ processed_images = []
128
+ for i in range(blocks):
129
+ box = (
130
+ (i % (target_width // image_size)) * image_size,
131
+ (i // (target_width // image_size)) * image_size,
132
+ ((i % (target_width // image_size)) + 1) * image_size,
133
+ ((i // (target_width // image_size)) + 1) * image_size
134
+ )
135
+ # split the image
136
+ split_img = resized_img.crop(box)
137
+ processed_images.append(split_img)
138
+ assert len(processed_images) == blocks
139
+ if use_thumbnail and len(processed_images) != 1:
140
+ thumbnail_img = image.resize((image_size, image_size))
141
+ processed_images.append(thumbnail_img)
142
+ return processed_images
143
+
144
+
145
+ def load_image(image_file, input_size=448, max_num=6):
146
+ image = Image.open(image_file).convert('RGB')
147
+ transform = build_transform(input_size=input_size)
148
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
149
+ pixel_values = [transform(image) for image in images]
150
+ pixel_values = torch.stack(pixel_values)
151
+ return pixel_values
152
+
153
+
154
+ path = "OpenGVLab/Mini-InternVL-Chat-2B-V1-5"
155
+ model = AutoModel.from_pretrained(
156
+ path,
157
+ torch_dtype=torch.bfloat16,
158
+ low_cpu_mem_usage=True,
159
+ trust_remote_code=True).eval().cuda()
160
+
161
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
162
+ # set the max number of tiles in `max_num`
163
+ pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
164
+
165
+ generation_config = dict(
166
+ num_beams=1,
167
+ max_new_tokens=512,
168
+ do_sample=False,
169
+ )
170
+
171
+ # single-round single-image conversation
172
+ question = "请详细描述图片" # Please describe the picture in detail
173
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
174
+ print(question, response)
175
+
176
+ # multi-round single-image conversation
177
+ question = "请详细描述图片" # Please describe the picture in detail
178
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
179
+ print(question, response)
180
+
181
+ question = "请根据图片写一首诗" # Please write a poem according to the picture
182
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
183
+ print(question, response)
184
+
185
+ # multi-round multi-image conversation
186
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
187
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
188
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
189
+
190
+ question = "详细描述这两张图片" # Describe the two pictures in detail
191
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
192
+ print(question, response)
193
+
194
+ question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures
195
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
196
+ print(question, response)
197
+
198
+ # batch inference (single image per sample)
199
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
200
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
201
+ image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
202
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
203
+
204
+ questions = ["Describe the image in detail."] * len(image_counts)
205
+ responses = model.batch_chat(tokenizer, pixel_values,
206
+ image_counts=image_counts,
207
+ questions=questions,
208
+ generation_config=generation_config)
209
+ for question, response in zip(questions, responses):
210
+ print(question)
211
+ print(response)
212
+ ```
213
+
214
+ ## Citation
215
+
216
+ If you find this project useful in your research, please consider citing:
217
+
218
+ ```BibTeX
219
+ @article{chen2023internvl,
220
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
221
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
222
+ journal={arXiv preprint arXiv:2312.14238},
223
+ year={2023}
224
+ }
225
+ ```
226
+
227
+ ## License
228
+
229
+ This project is released under the MIT license.
230
+
231
+ ## Acknowledgement
232
+
233
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!