Upload folder using huggingface_hub
Browse files- README.md +12 -20
- modeling_intern_vit.py +6 -12
README.md
CHANGED
@@ -239,7 +239,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
|
|
239 |
|
240 |
# set the max number of tiles in `max_num`
|
241 |
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
242 |
-
generation_config = dict(max_new_tokens=1024, do_sample=
|
243 |
|
244 |
# pure-text conversation (纯文本对话)
|
245 |
question = 'Hello, who are you?'
|
@@ -391,7 +391,7 @@ for new_text in streamer:
|
|
391 |
|
392 |
## Finetune
|
393 |
|
394 |
-
|
395 |
|
396 |
## Deployment
|
397 |
|
@@ -400,7 +400,7 @@ SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of I
|
|
400 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
401 |
|
402 |
```sh
|
403 |
-
pip install lmdeploy
|
404 |
```
|
405 |
|
406 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
@@ -408,14 +408,12 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
|
|
408 |
#### A 'Hello, world' example
|
409 |
|
410 |
```python
|
411 |
-
from lmdeploy import pipeline,
|
412 |
from lmdeploy.vl import load_image
|
413 |
|
414 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
415 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
416 |
-
|
417 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
418 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
419 |
response = pipe(('describe this image', image))
|
420 |
print(response.text)
|
421 |
```
|
@@ -429,14 +427,12 @@ When dealing with multiple images, you can put them all in one list. Keep in min
|
|
429 |
> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
|
430 |
|
431 |
```python
|
432 |
-
from lmdeploy import pipeline,
|
433 |
from lmdeploy.vl import load_image
|
434 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
435 |
|
436 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
437 |
-
|
438 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
439 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
440 |
|
441 |
image_urls=[
|
442 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
@@ -454,13 +450,11 @@ print(response.text)
|
|
454 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
455 |
|
456 |
```python
|
457 |
-
from lmdeploy import pipeline,
|
458 |
from lmdeploy.vl import load_image
|
459 |
|
460 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
461 |
-
|
462 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
463 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
464 |
|
465 |
image_urls=[
|
466 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
@@ -476,13 +470,11 @@ print(response)
|
|
476 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
477 |
|
478 |
```python
|
479 |
-
from lmdeploy import pipeline,
|
480 |
from lmdeploy.vl import load_image
|
481 |
|
482 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
483 |
-
|
484 |
-
pipe = pipeline(model, chat_template_config=chat_template_config,
|
485 |
-
backend_config=PytorchEngineConfig(session_len=8192))
|
486 |
|
487 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
488 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
@@ -497,7 +489,7 @@ print(sess.response.text)
|
|
497 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
498 |
|
499 |
```shell
|
500 |
-
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --backend
|
501 |
```
|
502 |
|
503 |
To use the OpenAI-style interface, you need to install OpenAI:
|
|
|
239 |
|
240 |
# set the max number of tiles in `max_num`
|
241 |
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
242 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
243 |
|
244 |
# pure-text conversation (纯文本对话)
|
245 |
question = 'Hello, who are you?'
|
|
|
391 |
|
392 |
## Finetune
|
393 |
|
394 |
+
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
|
395 |
|
396 |
## Deployment
|
397 |
|
|
|
400 |
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
|
401 |
|
402 |
```sh
|
403 |
+
pip install lmdeploy==0.5.3
|
404 |
```
|
405 |
|
406 |
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
|
|
408 |
#### A 'Hello, world' example
|
409 |
|
410 |
```python
|
411 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
412 |
from lmdeploy.vl import load_image
|
413 |
|
414 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
415 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
416 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
417 |
response = pipe(('describe this image', image))
|
418 |
print(response.text)
|
419 |
```
|
|
|
427 |
> Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
|
428 |
|
429 |
```python
|
430 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
431 |
from lmdeploy.vl import load_image
|
432 |
from lmdeploy.vl.constants import IMAGE_TOKEN
|
433 |
|
434 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
435 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
436 |
|
437 |
image_urls=[
|
438 |
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
|
|
450 |
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
451 |
|
452 |
```python
|
453 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
454 |
from lmdeploy.vl import load_image
|
455 |
|
456 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
457 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
458 |
|
459 |
image_urls=[
|
460 |
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
|
|
470 |
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
471 |
|
472 |
```python
|
473 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
474 |
from lmdeploy.vl import load_image
|
475 |
|
476 |
model = 'OpenGVLab/Mini-InternVL-Chat-4B-V1-5'
|
477 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
|
|
|
|
478 |
|
479 |
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
480 |
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
|
|
489 |
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
490 |
|
491 |
```shell
|
492 |
+
lmdeploy serve api_server OpenGVLab/Mini-InternVL-Chat-4B-V1-5 --backend turbomind --server-port 23333
|
493 |
```
|
494 |
|
495 |
To use the OpenAI-style interface, you need to install OpenAI:
|
modeling_intern_vit.py
CHANGED
@@ -20,18 +20,12 @@ from transformers.utils import logging
|
|
20 |
from .configuration_intern_vit import InternVisionConfig
|
21 |
|
22 |
try:
|
23 |
-
try: # v1
|
24 |
-
from flash_attn.flash_attn_interface import \
|
25 |
-
flash_attn_unpadded_qkvpacked_func
|
26 |
-
except: # v2
|
27 |
-
from flash_attn.flash_attn_interface import \
|
28 |
-
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
29 |
-
|
30 |
from flash_attn.bert_padding import pad_input, unpad_input
|
31 |
-
|
|
|
32 |
has_flash_attn = True
|
33 |
except:
|
34 |
-
print('
|
35 |
has_flash_attn = False
|
36 |
|
37 |
logger = logging.get_logger(__name__)
|
@@ -74,7 +68,7 @@ class FlashAttention(nn.Module):
|
|
74 |
max_s = seqlen
|
75 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
76 |
device=qkv.device)
|
77 |
-
output =
|
78 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
79 |
softmax_scale=self.softmax_scale, causal=causal
|
80 |
)
|
@@ -84,7 +78,7 @@ class FlashAttention(nn.Module):
|
|
84 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
85 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
86 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
87 |
-
output_unpad =
|
88 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
89 |
softmax_scale=self.softmax_scale, causal=causal
|
90 |
)
|
@@ -93,7 +87,7 @@ class FlashAttention(nn.Module):
|
|
93 |
'b s (h d) -> b s h d', h=nheads)
|
94 |
else:
|
95 |
assert max_s is not None
|
96 |
-
output =
|
97 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
98 |
softmax_scale=self.softmax_scale, causal=causal
|
99 |
)
|
|
|
20 |
from .configuration_intern_vit import InternVisionConfig
|
21 |
|
22 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from flash_attn.bert_padding import pad_input, unpad_input
|
24 |
+
from flash_attn.flash_attn_interface import \
|
25 |
+
flash_attn_varlen_qkvpacked_func
|
26 |
has_flash_attn = True
|
27 |
except:
|
28 |
+
print('FlashAttention2 is not installed.')
|
29 |
has_flash_attn = False
|
30 |
|
31 |
logger = logging.get_logger(__name__)
|
|
|
68 |
max_s = seqlen
|
69 |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
70 |
device=qkv.device)
|
71 |
+
output = flash_attn_varlen_qkvpacked_func(
|
72 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
73 |
softmax_scale=self.softmax_scale, causal=causal
|
74 |
)
|
|
|
78 |
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
79 |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
80 |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
81 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
82 |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
83 |
softmax_scale=self.softmax_scale, causal=causal
|
84 |
)
|
|
|
87 |
'b s (h d) -> b s h d', h=nheads)
|
88 |
else:
|
89 |
assert max_s is not None
|
90 |
+
output = flash_attn_varlen_qkvpacked_func(
|
91 |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
92 |
softmax_scale=self.softmax_scale, causal=causal
|
93 |
)
|