jeix commited on
Commit
f219484
·
1 Parent(s): 31e492c

Add model files

Browse files
README.md CHANGED
@@ -1,3 +1,347 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - internlm/internlm2-chat-1_8b
7
+ base_model_relation: merge
8
+ language:
9
+ - multilingual
10
+ tags:
11
+ - internvl
12
+ - vision
13
+ - ocr
14
+ - custom_code
15
+ - moe
16
+ ---
17
+
18
+ # Mono-InternVL-2B
19
+
20
+ [\[⭐️Project Page\]](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) [\[📜 Mono-InternVL Paper\]](https://arxiv.org/abs/2410.08202) [\[📝 公众号报道\]](https://mp.weixin.qq.com/s/FmjG0Gp5ow7mm2Vzd9ppPg) [\[🚀 Quick Start\]](#quick-start)
21
+
22
+ [切换至中文版](#简介)
23
+
24
+ <a id="radar"></a>
25
+
26
+ ![image/png](images/fig1.jpg)
27
+
28
+ ![image/png](images/fig2.jpg)
29
+
30
+ ## News🔥🔥🔥
31
+ - **2024.11.11**: Mono-InternVL is supported by [lmdeploy](https://github.com/InternLM/lmdeploy/pull/2727)
32
+ - **2024.11.3**: Mono-InternVL is supported by [vllm](https://github.com/vllm-project/vllm/pull/9528).
33
+
34
+ ## Introduction
35
+
36
+ We release Mono-InternVL, a **monolithic** multimodal large language model (MLLM) that integrates visual encoding and textual decoding into a single LLM. In Mono-InternVL, a set of visual experts is embedded into the pre-trained LLM via a mixture-of-experts (MoE) mechanism. By freezing the LLM, Mono-InternVL ensures that visual capabilities are optimized without compromising the pre-trained language knowledge. Based on this structure, an innovative Endogenous Visual Pretraining (EViP) is introduced to realize coarse-to-fine visual learning.
37
+
38
+
39
+
40
+ Mono-InternVL achieves superior performance compared to state-of-the-art MLLM Mini-InternVL-2B-1.5 and significantly outperforms other monolithic MLLMs, as shown in the [radar chart](#radar) above. Meanwhile, it achieves better deployment efficiency, with first token latency reduced by up to 67%.
41
+
42
+
43
+
44
+ This repository contains the instruction-tuned Mono-InternVL-2B model, which has 1.8B activated parameters (3B in total). It is built upon [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b). For more details, please refer to our [paper](https://arxiv.org/abs/2410.08202).
45
+
46
+
47
+
48
+
49
+
50
+ ## Performance
51
+ | Benchmark | Chameleon-7B | EVE-7B (HD) | Emu3 | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
52
+ | :--------------------------: | :----------: | :---------: | :--------: | :------------------: | :--------------: |
53
+ | Type | Monolithic | Monolithic | Monolithic | Modular | Monolithic |
54
+ | #Activated Params | 7B | 7B | 8B | 2.2B | 1.8B |
55
+ | | | | | | |
56
+ | MMVet | 8.3 | 25.7 | 37.2 | 39.3 | 40.1 |
57
+ | MMMU<sub>val</sub> | 25.4 | 32.6 | 31.6 | 34.6 | 33.7 |
58
+ | MME<sub>sum</sub> | 170 | 1628 | — | 1902 | 1875 |
59
+ | MMBench-EN<sub>test</sub> | 31.1 | 52.3 | 58.5 | 70.9 | 65.5 |
60
+ | MathVista<sub>testmini</sub> | 22.3 | 34.2 | — | 41.1 | 45.7 |
61
+ | SEED-Image | 30.6 | 64.6 | 68.2 | 69.8 | 67.4 |
62
+ | OCRBench | 7 | 398 | 687 | 654 | 767 |
63
+ | Hallusion-Bench | 17.1 | 26.4 | — | 37.5 | 34.8 |
64
+ | CCBench<sub>dev</sub> | 3.5 | 16.3 | — | 63.5 | 66.3 |
65
+ | Avg<sub>multimodal</sub> | 16.1 | 38.9 | — | 54.4 | 55.2 |
66
+ | | | | | | |
67
+ | TextVQA<sub>val</sub> | 4.8 | 56.8 | 64.7 | 70.5 | 72.6 |
68
+ | SQA-I<sub>test</sub> | 47.2 | 64.9 | 89.2 | 84.9 | 93.6 |
69
+ | GQA<sub>test</sub> | — | 62.6 | 60.3 | 61.6 | 59.5 |
70
+ | DocVQA<sub>test</sub> | 1.5 | 53.0 | 76.3 | 85.0 | 80.0 |
71
+ | AI2D<sub>test</sub> | 46.0 | 61.0 | 70.0 | 69.8 | 68.6 |
72
+ | ChartQA<sub>test</sub> | 2.9 | 59.1 | 68.6 | 74.8 | 73.7 |
73
+ | InfoVQA<sub>test</sub> | 5.0 | 25.0 | 43.8 | 55.4 | 43.0 |
74
+ | Avg<sub>VQA</sub> | 17.9 | 54.6 | 67.6 | 71.7 | 70.1 |
75
+
76
+ - Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
77
+ - Average scores are computed by normalizing each metric to a range between 0 and 100.
78
+ - Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
79
+
80
+
81
+
82
+ Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
83
+
84
+
85
+
86
+ ## Quick Start
87
+
88
+ We provide an example code to run Mono-InternVL-2B inference using `transformers`.
89
+
90
+ > Please use transformers==4.37.2 to ensure the model works normally.
91
+
92
+
93
+ ### Inference with Transformers
94
+
95
+ ```python
96
+ import numpy as np
97
+ import torch
98
+ import torchvision.transforms as T
99
+ from decord import VideoReader, cpu
100
+ from PIL import Image
101
+ from torchvision.transforms.functional import InterpolationMode
102
+ from transformers import AutoModel, AutoTokenizer
103
+
104
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
105
+ IMAGENET_STD = (0.229, 0.224, 0.225)
106
+
107
+ def build_transform(input_size):
108
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
109
+ transform = T.Compose([
110
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
111
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
112
+ T.ToTensor(),
113
+ T.Normalize(mean=MEAN, std=STD)
114
+ ])
115
+ return transform
116
+
117
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
118
+ best_ratio_diff = float('inf')
119
+ best_ratio = (1, 1)
120
+ area = width * height
121
+ for ratio in target_ratios:
122
+ target_aspect_ratio = ratio[0] / ratio[1]
123
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
124
+ if ratio_diff < best_ratio_diff:
125
+ best_ratio_diff = ratio_diff
126
+ best_ratio = ratio
127
+ elif ratio_diff == best_ratio_diff:
128
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
129
+ best_ratio = ratio
130
+ return best_ratio
131
+
132
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
133
+ orig_width, orig_height = image.size
134
+ aspect_ratio = orig_width / orig_height
135
+
136
+ # calculate the existing image aspect ratio
137
+ target_ratios = set(
138
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
139
+ i * j <= max_num and i * j >= min_num)
140
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
141
+
142
+ # find the closest aspect ratio to the target
143
+ target_aspect_ratio = find_closest_aspect_ratio(
144
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
145
+
146
+ # calculate the target width and height
147
+ target_width = image_size * target_aspect_ratio[0]
148
+ target_height = image_size * target_aspect_ratio[1]
149
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
150
+
151
+ # resize the image
152
+ resized_img = image.resize((target_width, target_height))
153
+ processed_images = []
154
+ for i in range(blocks):
155
+ box = (
156
+ (i % (target_width // image_size)) * image_size,
157
+ (i // (target_width // image_size)) * image_size,
158
+ ((i % (target_width // image_size)) + 1) * image_size,
159
+ ((i // (target_width // image_size)) + 1) * image_size
160
+ )
161
+ # split the image
162
+ split_img = resized_img.crop(box)
163
+ processed_images.append(split_img)
164
+ assert len(processed_images) == blocks
165
+ if use_thumbnail and len(processed_images) != 1:
166
+ thumbnail_img = image.resize((image_size, image_size))
167
+ processed_images.append(thumbnail_img)
168
+ return processed_images
169
+
170
+ def load_image(image_file, input_size=448, max_num=12):
171
+ image = Image.open(image_file).convert('RGB')
172
+ transform = build_transform(input_size=input_size)
173
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
174
+ pixel_values = [transform(image) for image in images]
175
+ pixel_values = torch.stack(pixel_values)
176
+ return pixel_values
177
+
178
+
179
+ path = 'OpenGVLab/Mono-InternVL-2B'
180
+ model = AutoModel.from_pretrained(
181
+ path,
182
+ torch_dtype=torch.bfloat16,
183
+ low_cpu_mem_usage=True,
184
+ trust_remote_code=True).eval().cuda()
185
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
186
+
187
+ # set the max number of tiles in `max_num`
188
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
189
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
190
+
191
+ # pure-text conversation (纯文本对话)
192
+ question = 'Hello, who are you?'
193
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
194
+ print(f'User: {question}\nAssistant: {response}')
195
+
196
+ question = 'Can you tell me a story?'
197
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
198
+ print(f'User: {question}\nAssistant: {response}')
199
+
200
+ # single-image single-round conversation (单图单轮对话)
201
+ question = '<image>\nPlease describe the image shortly.'
202
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
203
+ print(f'User: {question}\nAssistant: {response}')
204
+
205
+ # single-image multi-round conversation (单图多轮对话)
206
+ question = '<image>\nPlease describe the image in detail.'
207
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
208
+ print(f'User: {question}\nAssistant: {response}')
209
+
210
+ question = 'Please write a poem according to the image.'
211
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
212
+ print(f'User: {question}\nAssistant: {response}')
213
+ ```
214
+
215
+ ### Inference with LMDeploy
216
+
217
+ Please install lmdeploy>=0.6.3 for Mono-InternVL support.
218
+
219
+ ```python
220
+ from lmdeploy import pipeline
221
+ from lmdeploy.vl import load_image
222
+
223
+ image = load_image('./examples/image1.jpg')
224
+ pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
225
+ response = pipe(('Please describe the image shortly.', image))
226
+ print(response.text)
227
+ ```
228
+
229
+ ## License
230
+
231
+ This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.
232
+
233
+ ## Citation
234
+
235
+ If you find this project useful in your research, please consider citing:
236
+
237
+ ```BibTeX
238
+ @article{luo2024mono,
239
+ title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
240
+ author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
241
+ journal={arXiv preprint arXiv:2410.08202},
242
+ year={2024}
243
+ }
244
+
245
+ @article{chen2024far,
246
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
247
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
248
+ journal={arXiv preprint arXiv:2404.16821},
249
+ year={2024}
250
+ }
251
+
252
+ @inproceedings{chen2024internvl,
253
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
254
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
255
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
256
+ pages={24185--24198},
257
+ year={2024}
258
+ }
259
+ ```
260
+
261
+
262
+
263
+
264
+
265
+ ## 简介
266
+
267
+ 我们发布了Mono-InternVL,这是一种**原生**多模态大语言模型,将视觉编码和文本解码集成到一个单一的大语言模型中。在Mono-InternVL中,一组视觉专家通过专家混合机制嵌入到预训练的语言模型中。通过冻结语言模型的语言部分参数,Mono-InternVL确保了视觉能力的优化,同时不会影响预训练的语言知识。基于这一结构,我们引入了内生视觉预训练(Endogenous Visual Pretraining, EViP),实现了由粗粒度到精粒度的视觉学习。
268
+
269
+ Mono-InternVL在性能上优于当前最先进的多模态语言模型Mini-InternVL-2B-1.5,并且显著超越了其他原生多模态模型,如上方的[雷达图](#radar)所示。同时,它的部署效率也得到了提升,首个单词的延迟降低了最多达67%。
270
+
271
+ 本仓库包含了经过指令微调的Mono-InternVL-2B模型,它是基于[internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b)搭建的。更多详细信息,请参阅我们的[论文](https://arxiv.org/abs/2410.08202)和[公众号报道](https://mp.weixin.qq.com/s/FmjG0Gp5ow7mm2Vzd9ppPg)。
272
+
273
+
274
+
275
+ ## 性能测试
276
+ | 评测数据集 | Chameleon-7B | EVE-7B (HD) | Emu3 | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
277
+ | :--------------------------: | :----------: | :---------: | :----: | :------------------: | :--------------: |
278
+ | 模型种类 | 原生 | 原生 | 原生 | 非原生 | 原生 |
279
+ | 激活参数 | 7B | 7B | 8B | 2.2B | 1.8B |
280
+ | | | | | | |
281
+ | MMVet | 8.3 | 25.7 | 37.2 | 39.3 | 40.1 |
282
+ | MMMU<sub>val</sub> | 25.4 | 32.6 | 31.6 | 34.6 | 33.7 |
283
+ | MME<sub>sum</sub> | 170 | 1628 | — | 1902 | 1875 |
284
+ | MMBench-EN<sub>test</sub> | 31.1 | 52.3 | 58.5 | 70.9 | 65.5 |
285
+ | MathVista<sub>testmini</sub> | 22.3 | 34.2 | — | 41.1 | 45.7 |
286
+ | SEED-Image | 30.6 | 64.6 | 68.2 | 69.8 | 67.4 |
287
+ | OCRBench | 7 | 398 | 687 | 654 | 767 |
288
+ | Hallusion-Bench | 17.1 | 26.4 | — | 37.5 | 34.8 |
289
+ | CCBench<sub>dev</sub> | 3.5 | 16.3 | — | 63.5 | 66.3 |
290
+ | Avg<sub>multimodal</sub> | 16.1 | 38.9 | — | 54.4 | 55.2 |
291
+ | | | | | | |
292
+ | TextVQA<sub>val</sub> | 4.8 | 56.8 | 64.7 | 70.5 | 72.6 |
293
+ | SQA-I<sub>test</sub> | 47.2 | 64.9 | 89.2 | 84.9 | 93.6 |
294
+ | GQA<sub>test</sub> | — | 62.6 | 60.3 | 61.6 | 59.5 |
295
+ | DocVQA<sub>test</sub> | 1.5 | 53.0 | 76.3 | 85.0 | 80.0 |
296
+ | AI2D<sub>test</sub> | 46.0 | 61.0 | 70.0 | 69.8 | 68.6 |
297
+ | ChartQA<sub>test</sub> | 2.9 | 59.1 | 68.6 | 74.8 | 73.7 |
298
+ | InfoVQA<sub>test</sub> | 5.0 | 25.0 | 43.8 | 55.4 | 43.0 |
299
+ | Avg<sub>VQA</sub> | 17.9 | 54.6 | 67.6 | 71.7 | 70.1 |
300
+
301
+ - 以上结果的来源包括相应的原始论文、我们基于[VLMEvalKit](https://github.com/open-compass/VLMEvalKit)的评测,以及[OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME)。
302
+ - 平均分数Avg通过将每个指标归一化到0至100之间来计算。
303
+ - 请注意,使用不同的测试工具包评估同一模型可能会导致评测结果的细微差异,这是正常的。代码版本的更新、环境和硬件的变化也可能导致结果的微小差异。
304
+
305
+
306
+
307
+ ## 快速上手
308
+
309
+ 我们提供了一个示例代码,用于使用 `transformers` 进行 Mono-InternVL-2B 推理。
310
+
311
+ > 请使用 transformers==4.37.2 以确保模型正常运行。
312
+
313
+ 示例代码请[点击这里](#quick-start)。
314
+
315
+
316
+ ## 开源许可证
317
+
318
+ 该项目采用 MIT 许可证发布,而 InternLM2 则采用 Apache-2.0 许可证。
319
+
320
+ ## 引用
321
+
322
+ 如果您发现此项目对您的研究有用,可以考虑引用我们的论文:
323
+
324
+ ```BibTeX
325
+ @article{luo2024mono,
326
+ title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
327
+ author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
328
+ journal={arXiv preprint arXiv:2410.08202},
329
+ year={2024}
330
+ }
331
+
332
+ @article{chen2024far,
333
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
334
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
335
+ journal={arXiv preprint arXiv:2404.16821},
336
+ year={2024}
337
+ }
338
+
339
+ @inproceedings{chen2024internvl,
340
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
341
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
342
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
343
+ pages={24185--24198},
344
+ year={2024}
345
+ }
346
+
347
+ ```
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
config.json ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "./work_dirs/internvl_chat_lite/internvl_chat_v1_5_internlm2_1_8b_dynamic12_res_alignment_pt_mlp_unfreeze_attn_5e-5/checkpoint-70000",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "llm_config": {
16
+ "_name_or_path": "./my_pretrained/internlm2-chat-1_8b_ve",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "InternLM2VEForCausalLM"
20
+ ],
21
+ "attn_implementation": "flash_attention_2",
22
+ "auto_map": {
23
+ "AutoConfig": "configuration_internlm2_.InternLM2Config",
24
+ "AutoModel": "modeling_internlm2_ve.InternLM2VEForCausalLM",
25
+ "AutoModelForCausalLM": "modeling_internlm2_ve.InternLM2VEForCausalLM"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bias": false,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 2,
39
+ "expert_dp_comm": "none",
40
+ "exponential_decay_length_penalty": null,
41
+ "finetuning_task": null,
42
+ "forced_bos_token_id": null,
43
+ "forced_eos_token_id": null,
44
+ "hidden_act": "silu",
45
+ "hidden_size": 2048,
46
+ "id2label": {
47
+ "0": "LABEL_0",
48
+ "1": "LABEL_1"
49
+ },
50
+ "initializer_range": 0.02,
51
+ "intermediate_size": 8192,
52
+ "is_decoder": false,
53
+ "is_encoder_decoder": false,
54
+ "label2id": {
55
+ "LABEL_0": 0,
56
+ "LABEL_1": 1
57
+ },
58
+ "length_penalty": 1.0,
59
+ "max_length": 20,
60
+ "max_position_embeddings": 32768,
61
+ "min_length": 0,
62
+ "model_type": "internlm2",
63
+ "moe_top_k": 1,
64
+ "no_repeat_ngram_size": 0,
65
+ "num_attention_heads": 16,
66
+ "num_beam_groups": 1,
67
+ "num_beams": 1,
68
+ "num_expert": -1,
69
+ "num_hidden_layers": 24,
70
+ "num_key_value_heads": 8,
71
+ "num_return_sequences": 1,
72
+ "output_attentions": false,
73
+ "output_hidden_states": true,
74
+ "output_scores": false,
75
+ "pad_token_id": 2,
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": null,
85
+ "rope_theta": 1000000,
86
+ "sep_token_id": null,
87
+ "suppress_tokens": null,
88
+ "task_specific_params": null,
89
+ "temperature": 1.0,
90
+ "tf_legacy_loss": false,
91
+ "tie_encoder_decoder": false,
92
+ "tie_word_embeddings": false,
93
+ "tokenizer_class": null,
94
+ "top_k": 50,
95
+ "top_p": 1.0,
96
+ "torch_dtype": "bfloat16",
97
+ "torchscript": false,
98
+ "transformers_version": "4.37.2",
99
+ "typical_p": 1.0,
100
+ "use_bfloat16": false,
101
+ "use_cache": false,
102
+ "vocab_size": 92553
103
+ },
104
+ "max_dynamic_patch": 24,
105
+ "min_dynamic_patch": 1,
106
+ "model_type": "internvl_chat",
107
+ "pad2square": false,
108
+ "ps_version": "v2",
109
+ "select_layer": -1,
110
+ "template": "internlm2-chat",
111
+ "torch_dtype": "bfloat16",
112
+ "transformers_version": null,
113
+ "use_backbone_lora": 0,
114
+ "use_llm_lora": 0,
115
+ "use_thumbnail": true,
116
+ "vision_config": {
117
+ "architectures": [
118
+ "InternVisionPatchModel"
119
+ ],
120
+ "auto_map": {
121
+ "AutoConfig": "configuration_intern_patch.InternVisionPatchConfig",
122
+ "AutoModel": "modeling_intern_patch.InternVisionPatchModel"
123
+ },
124
+ "hidden_size": 1024,
125
+ "image_size": 448,
126
+ "model_type": "intern_vit_patch",
127
+ "patch_size": 14
128
+ }
129
+ }
configuration_intern_patch.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+
16
+ class InternVisionPatchConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_patch'
63
+
64
+ def __init__(
65
+ self,
66
+ patch_size=14,
67
+ image_size=224,
68
+ hidden_size=3200,
69
+ **kwargs,
70
+ ):
71
+ super().__init__(**kwargs)
72
+
73
+ self.hidden_size = hidden_size
74
+ self.patch_size = patch_size
75
+ self.image_size = image_size
76
+
77
+ @classmethod
78
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
79
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
80
+
81
+ if 'vision_config' in config_dict:
82
+ config_dict = config_dict['vision_config']
83
+
84
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
85
+ logger.warning(
86
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
87
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
88
+ )
89
+
90
+
91
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from .configuration_internlm2 import InternLM2Config
10
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.utils import logging
13
+
14
+ from .configuration_intern_patch import InternVisionPatchConfig
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ pad2square=False,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ if vision_config and vision_config['model_type']=='intern_vit_patch':
51
+ self.vision_config = InternVisionPatchConfig(**vision_config)
52
+ else:
53
+ raise ValueError('Unsupported vision model type: {}'.format(vision_config['model_type']))
54
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
55
+ self.llm_config = LlamaConfig(**llm_config)
56
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
57
+ self.llm_config = InternLM2Config(**llm_config)
58
+ elif llm_config['architectures'][0] == 'InternLM2VEForCausalLM':
59
+ self.llm_config = InternLM2Config(**llm_config)
60
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
61
+ self.llm_config = Qwen2Config(**llm_config)
62
+ else:
63
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
64
+ self.use_backbone_lora = use_backbone_lora
65
+ self.use_llm_lora = use_llm_lora
66
+ self.pad2square = pad2square
67
+ self.select_layer = select_layer
68
+ self.force_image_size = force_image_size
69
+ self.downsample_ratio = downsample_ratio
70
+ self.template = template
71
+ self.dynamic_image_size = dynamic_image_size
72
+ self.use_thumbnail = use_thumbnail
73
+ self.ps_version = ps_version # pixel shuffle version
74
+ self.min_dynamic_patch = min_dynamic_patch
75
+ self.max_dynamic_patch = max_dynamic_patch
76
+
77
+ logger.info(f'vision_select_layer: {self.select_layer}')
78
+ logger.info(f'ps_version: {self.ps_version}')
79
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
80
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
81
+
82
+ def to_dict(self):
83
+ """
84
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
85
+
86
+ Returns:
87
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
88
+ """
89
+ output = copy.deepcopy(self.__dict__)
90
+ output['vision_config'] = self.vision_config.to_dict()
91
+ output['llm_config'] = self.llm_config.to_dict()
92
+ output['model_type'] = self.__class__.model_type
93
+ output['use_backbone_lora'] = self.use_backbone_lora
94
+ output['use_llm_lora'] = self.use_llm_lora
95
+ output['pad2square'] = self.pad2square
96
+ output['select_layer'] = self.select_layer
97
+ output['force_image_size'] = self.force_image_size
98
+ output['downsample_ratio'] = self.downsample_ratio
99
+ output['template'] = self.template
100
+ output['dynamic_image_size'] = self.dynamic_image_size
101
+ output['use_thumbnail'] = self.use_thumbnail
102
+ output['ps_version'] = self.ps_version
103
+ output['min_dynamic_patch'] = self.min_dynamic_patch
104
+ output['max_dynamic_patch'] = self.max_dynamic_patch
105
+
106
+ return output
conversation.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep2, self.sep]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # InternVL-Chat-V1-1 template
334
+ register_conv_template(
335
+ Conversation(
336
+ name='internvl_zh',
337
+ system_template='',
338
+ roles=('<human>', '<bot>'),
339
+ sep_style=SeparatorStyle.INTERNVL_ZH,
340
+ sep='</s>',
341
+ sep2=' ',
342
+ )
343
+ )
344
+
345
+
346
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
347
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
348
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
349
+ # Therefore, they are completely equivalent during inference.
350
+ register_conv_template(
351
+ Conversation(
352
+ name='Hermes-2',
353
+ system_template='<|im_start|>system\n{system_message}',
354
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
355
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
356
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
357
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
358
+ sep_style=SeparatorStyle.MPT,
359
+ sep='<|im_end|>',
360
+ stop_token_ids=[
361
+ 2,
362
+ 6,
363
+ 7,
364
+ 8,
365
+ ],
366
+ stop_str='<|endoftext|>',
367
+ )
368
+ )
369
+
370
+
371
+ register_conv_template(
372
+ Conversation(
373
+ name='internlm2-chat',
374
+ system_template='<|im_start|>system\n{system_message}',
375
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
376
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
377
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
378
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
379
+ sep_style=SeparatorStyle.MPT,
380
+ sep='<|im_end|>',
381
+ stop_token_ids=[
382
+ 2,
383
+ 92543,
384
+ 92542
385
+ ]
386
+ )
387
+ )
388
+
389
+
390
+ register_conv_template(
391
+ Conversation(
392
+ name='phi3-chat',
393
+ system_template='<|system|>\n{system_message}',
394
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
395
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。',
396
+ system_message='你是由上海人工智能实验室联合商汤科技开���的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
397
+ roles=('<|user|>\n', '<|assistant|>\n'),
398
+ sep_style=SeparatorStyle.MPT,
399
+ sep='<|end|>',
400
+ stop_token_ids=[
401
+ 2,
402
+ 32000,
403
+ 32007
404
+ ]
405
+ )
406
+ )
examples/image1.jpg ADDED
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2"
4
+ }
images/fig1.jpg ADDED
images/fig2.jpg ADDED
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6304d38d6d4f5e19f5f5c01b40df5c2f8304f3bec207e62cb03e6ab569e1a5c1
3
+ size 4971164000
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:443ac80118e992760f9777b5765fb230f23becadaa5436c70cc060962f9713f5
3
+ size 1251579280
model.safetensors.index.json ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6222710784
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.layers.0.attention.wo.weight": "model-00001-of-00002.safetensors",
7
+ "language_model.model.layers.0.attention.wqkv.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.attention_norm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.ffn_norm.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.1.attention.wo.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.1.attention.wqkv.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.1.attention_norm.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.1.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.ffn_norm.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.10.attention.wo.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.10.attention.wqkv.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.10.attention_norm.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.10.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.10.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.10.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.10.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.ffn_norm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.11.attention.wo.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.11.attention.wqkv.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.11.attention_norm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.11.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.11.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.11.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.11.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.11.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.11.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.11.ffn_norm.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.12.attention.wo.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.12.attention.wqkv.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.12.attention_norm.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.12.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.12.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.12.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.12.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.12.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.12.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.12.ffn_norm.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.13.attention.wo.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.13.attention.wqkv.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.13.attention_norm.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.13.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.13.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.13.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.13.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.13.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.13.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.13.ffn_norm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.14.attention.wo.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.14.attention.wqkv.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.14.attention_norm.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.14.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.14.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.14.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.14.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.14.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.14.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.14.ffn_norm.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.15.attention.wo.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.15.attention.wqkv.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.15.attention_norm.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.15.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.15.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.15.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.15.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.15.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.15.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.15.ffn_norm.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.16.attention.wo.weight": "model-00001-of-00002.safetensors",
87
+ "language_model.model.layers.16.attention.wqkv.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.16.attention_norm.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.16.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.16.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
91
+ "language_model.model.layers.16.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
92
+ "language_model.model.layers.16.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.16.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.16.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.16.ffn_norm.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.17.attention.wo.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.17.attention.wqkv.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.17.attention_norm.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.17.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
100
+ "language_model.model.layers.17.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
101
+ "language_model.model.layers.17.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
102
+ "language_model.model.layers.17.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
103
+ "language_model.model.layers.17.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
104
+ "language_model.model.layers.17.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
105
+ "language_model.model.layers.17.ffn_norm.weight": "model-00001-of-00002.safetensors",
106
+ "language_model.model.layers.18.attention.wo.weight": "model-00001-of-00002.safetensors",
107
+ "language_model.model.layers.18.attention.wqkv.weight": "model-00001-of-00002.safetensors",
108
+ "language_model.model.layers.18.attention_norm.weight": "model-00001-of-00002.safetensors",
109
+ "language_model.model.layers.18.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
110
+ "language_model.model.layers.18.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
111
+ "language_model.model.layers.18.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
112
+ "language_model.model.layers.18.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
113
+ "language_model.model.layers.18.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
114
+ "language_model.model.layers.18.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
115
+ "language_model.model.layers.18.ffn_norm.weight": "model-00001-of-00002.safetensors",
116
+ "language_model.model.layers.19.attention.wo.weight": "model-00001-of-00002.safetensors",
117
+ "language_model.model.layers.19.attention.wqkv.weight": "model-00001-of-00002.safetensors",
118
+ "language_model.model.layers.19.attention_norm.weight": "model-00001-of-00002.safetensors",
119
+ "language_model.model.layers.19.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
120
+ "language_model.model.layers.19.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
121
+ "language_model.model.layers.19.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
122
+ "language_model.model.layers.19.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
123
+ "language_model.model.layers.19.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
124
+ "language_model.model.layers.19.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
125
+ "language_model.model.layers.19.ffn_norm.weight": "model-00001-of-00002.safetensors",
126
+ "language_model.model.layers.2.attention.wo.weight": "model-00001-of-00002.safetensors",
127
+ "language_model.model.layers.2.attention.wqkv.weight": "model-00001-of-00002.safetensors",
128
+ "language_model.model.layers.2.attention_norm.weight": "model-00001-of-00002.safetensors",
129
+ "language_model.model.layers.2.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
130
+ "language_model.model.layers.2.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
131
+ "language_model.model.layers.2.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
132
+ "language_model.model.layers.2.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
133
+ "language_model.model.layers.2.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
134
+ "language_model.model.layers.2.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
135
+ "language_model.model.layers.2.ffn_norm.weight": "model-00001-of-00002.safetensors",
136
+ "language_model.model.layers.20.attention.wo.weight": "model-00001-of-00002.safetensors",
137
+ "language_model.model.layers.20.attention.wqkv.weight": "model-00001-of-00002.safetensors",
138
+ "language_model.model.layers.20.attention_norm.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.20.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
140
+ "language_model.model.layers.20.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.20.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.20.feed_forward_ve.w1.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.20.feed_forward_ve.w2.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.20.feed_forward_ve.w3.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.20.ffn_norm.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.21.attention.wo.weight": "model-00002-of-00002.safetensors",
147
+ "language_model.model.layers.21.attention.wqkv.weight": "model-00002-of-00002.safetensors",
148
+ "language_model.model.layers.21.attention_norm.weight": "model-00002-of-00002.safetensors",
149
+ "language_model.model.layers.21.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
150
+ "language_model.model.layers.21.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
151
+ "language_model.model.layers.21.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
152
+ "language_model.model.layers.21.feed_forward_ve.w1.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.21.feed_forward_ve.w2.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.21.feed_forward_ve.w3.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.21.ffn_norm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.22.attention.wo.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.22.attention.wqkv.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.22.attention_norm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.22.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.22.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.22.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.22.feed_forward_ve.w1.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.22.feed_forward_ve.w2.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.22.feed_forward_ve.w3.weight": "model-00002-of-00002.safetensors",
165
+ "language_model.model.layers.22.ffn_norm.weight": "model-00002-of-00002.safetensors",
166
+ "language_model.model.layers.23.attention.wo.weight": "model-00002-of-00002.safetensors",
167
+ "language_model.model.layers.23.attention.wqkv.weight": "model-00002-of-00002.safetensors",
168
+ "language_model.model.layers.23.attention_norm.weight": "model-00002-of-00002.safetensors",
169
+ "language_model.model.layers.23.feed_forward.w1.weight": "model-00002-of-00002.safetensors",
170
+ "language_model.model.layers.23.feed_forward.w2.weight": "model-00002-of-00002.safetensors",
171
+ "language_model.model.layers.23.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
172
+ "language_model.model.layers.23.feed_forward_ve.w1.weight": "model-00002-of-00002.safetensors",
173
+ "language_model.model.layers.23.feed_forward_ve.w2.weight": "model-00002-of-00002.safetensors",
174
+ "language_model.model.layers.23.feed_forward_ve.w3.weight": "model-00002-of-00002.safetensors",
175
+ "language_model.model.layers.23.ffn_norm.weight": "model-00002-of-00002.safetensors",
176
+ "language_model.model.layers.3.attention.wo.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.3.attention.wqkv.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.3.attention_norm.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.3.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.3.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.3.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.3.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.3.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.3.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.3.ffn_norm.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.4.attention.wo.weight": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.4.attention.wqkv.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.4.attention_norm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.4.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.4.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.4.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.4.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.4.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.4.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.4.ffn_norm.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.5.attention.wo.weight": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.5.attention.wqkv.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.5.attention_norm.weight": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.5.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.layers.5.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
201
+ "language_model.model.layers.5.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
202
+ "language_model.model.layers.5.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
203
+ "language_model.model.layers.5.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
204
+ "language_model.model.layers.5.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
205
+ "language_model.model.layers.5.ffn_norm.weight": "model-00001-of-00002.safetensors",
206
+ "language_model.model.layers.6.attention.wo.weight": "model-00001-of-00002.safetensors",
207
+ "language_model.model.layers.6.attention.wqkv.weight": "model-00001-of-00002.safetensors",
208
+ "language_model.model.layers.6.attention_norm.weight": "model-00001-of-00002.safetensors",
209
+ "language_model.model.layers.6.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
210
+ "language_model.model.layers.6.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
211
+ "language_model.model.layers.6.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
212
+ "language_model.model.layers.6.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
213
+ "language_model.model.layers.6.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
214
+ "language_model.model.layers.6.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
215
+ "language_model.model.layers.6.ffn_norm.weight": "model-00001-of-00002.safetensors",
216
+ "language_model.model.layers.7.attention.wo.weight": "model-00001-of-00002.safetensors",
217
+ "language_model.model.layers.7.attention.wqkv.weight": "model-00001-of-00002.safetensors",
218
+ "language_model.model.layers.7.attention_norm.weight": "model-00001-of-00002.safetensors",
219
+ "language_model.model.layers.7.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
220
+ "language_model.model.layers.7.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
221
+ "language_model.model.layers.7.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
222
+ "language_model.model.layers.7.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
223
+ "language_model.model.layers.7.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
224
+ "language_model.model.layers.7.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
225
+ "language_model.model.layers.7.ffn_norm.weight": "model-00001-of-00002.safetensors",
226
+ "language_model.model.layers.8.attention.wo.weight": "model-00001-of-00002.safetensors",
227
+ "language_model.model.layers.8.attention.wqkv.weight": "model-00001-of-00002.safetensors",
228
+ "language_model.model.layers.8.attention_norm.weight": "model-00001-of-00002.safetensors",
229
+ "language_model.model.layers.8.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
230
+ "language_model.model.layers.8.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
231
+ "language_model.model.layers.8.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
232
+ "language_model.model.layers.8.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
233
+ "language_model.model.layers.8.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
234
+ "language_model.model.layers.8.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
235
+ "language_model.model.layers.8.ffn_norm.weight": "model-00001-of-00002.safetensors",
236
+ "language_model.model.layers.9.attention.wo.weight": "model-00001-of-00002.safetensors",
237
+ "language_model.model.layers.9.attention.wqkv.weight": "model-00001-of-00002.safetensors",
238
+ "language_model.model.layers.9.attention_norm.weight": "model-00001-of-00002.safetensors",
239
+ "language_model.model.layers.9.feed_forward.w1.weight": "model-00001-of-00002.safetensors",
240
+ "language_model.model.layers.9.feed_forward.w2.weight": "model-00001-of-00002.safetensors",
241
+ "language_model.model.layers.9.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
242
+ "language_model.model.layers.9.feed_forward_ve.w1.weight": "model-00001-of-00002.safetensors",
243
+ "language_model.model.layers.9.feed_forward_ve.w2.weight": "model-00001-of-00002.safetensors",
244
+ "language_model.model.layers.9.feed_forward_ve.w3.weight": "model-00001-of-00002.safetensors",
245
+ "language_model.model.layers.9.ffn_norm.weight": "model-00001-of-00002.safetensors",
246
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
247
+ "language_model.model.tok_embeddings.weight": "model-00001-of-00002.safetensors",
248
+ "language_model.output.weight": "model-00002-of-00002.safetensors",
249
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
250
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
251
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
252
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
253
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
254
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
255
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
256
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
257
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
258
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors"
259
+ }
260
+ }
modeling_intern_patch.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from transformers.modeling_outputs import (
13
+ BaseModelOutputWithPooling)
14
+ from transformers.modeling_utils import PreTrainedModel
15
+ from transformers.utils import logging
16
+
17
+ from .configuration_intern_patch import InternVisionPatchConfig
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ class InternVisionEmbeddings(nn.Module):
23
+ def __init__(self, config: InternVisionPatchConfig):
24
+ super().__init__()
25
+ self.config = config
26
+ self.embed_dim = config.hidden_size
27
+ self.image_size = config.image_size
28
+ self.patch_size = config.patch_size
29
+
30
+ self.class_embedding = nn.Parameter(
31
+ torch.randn(1, 1, self.embed_dim),
32
+ )
33
+
34
+ self.patch_embedding = nn.Conv2d(
35
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
36
+ )
37
+
38
+ self.num_patches = (self.image_size // self.patch_size) ** 2
39
+ self.num_positions = self.num_patches + 1
40
+
41
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
42
+
43
+ def _get_pos_embed(self, pos_embed, H, W):
44
+ target_dtype = pos_embed.dtype
45
+ pos_embed = pos_embed.float().reshape(
46
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
47
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
48
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
49
+ return pos_embed
50
+
51
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
52
+ target_dtype = self.patch_embedding.weight.dtype
53
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
54
+ batch_size, _, height, width = patch_embeds.shape
55
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
56
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
57
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
58
+ position_embedding = torch.cat([
59
+ self.position_embedding[:, :1, :],
60
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
61
+ ], dim=1)
62
+ embeddings = embeddings + position_embedding.to(target_dtype)
63
+ return embeddings
64
+
65
+
66
+
67
+
68
+
69
+ class InternVisionPatchModel(PreTrainedModel):
70
+ main_input_name = 'pixel_values'
71
+ config_class = InternVisionPatchConfig
72
+ _no_split_modules = ['InternVisionEncoderLayer']
73
+
74
+ def __init__(self, config: InternVisionPatchConfig):
75
+ super().__init__(config)
76
+ self.config = config
77
+ self.embeddings = InternVisionEmbeddings(config)
78
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
79
+ pos_emb = self.embeddings.position_embedding
80
+ _, num_positions, embed_dim = pos_emb.shape
81
+ cls_emb = pos_emb[:, :1, :]
82
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
83
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
84
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
85
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
86
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
87
+ self.embeddings.image_size = new_size
88
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
89
+
90
+ def get_input_embeddings(self):
91
+ return self.embeddings
92
+
93
+
94
+ def forward(
95
+ self,
96
+ pixel_values: Optional[torch.FloatTensor] = None,
97
+ output_hidden_states: Optional[bool] = None,
98
+ return_dict: Optional[bool] = None,
99
+ pixel_embeds: Optional[torch.FloatTensor] = None,
100
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
101
+
102
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
103
+
104
+ if pixel_values is None:
105
+ raise ValueError('You have to specify pixel_values')
106
+
107
+
108
+ if len(pixel_values.shape) == 4:
109
+ hidden_states = self.embeddings(pixel_values)[:,1:]
110
+ else:
111
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
112
+
113
+
114
+ if not return_dict:
115
+ return (hidden_states, None,None)
116
+
117
+ return BaseModelOutputWithPooling(
118
+ last_hidden_state=hidden_states,
119
+ pooler_output=None,
120
+ hidden_states=None,
121
+ attentions=None,
122
+ )
modeling_internlm2_ve.py ADDED
@@ -0,0 +1,1458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ try:
147
+ from functools import partial
148
+
149
+ from apex.normalization import FusedRMSNorm
150
+ InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
151
+ print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
152
+ except ImportError:
153
+ # using the normal LlamaRMSNorm
154
+ pass
155
+ except Exception:
156
+ print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
157
+ pass
158
+
159
+
160
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
161
+ class InternLM2RotaryEmbedding(nn.Module):
162
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
163
+ super().__init__()
164
+
165
+ self.dim = dim
166
+ self.max_position_embeddings = max_position_embeddings
167
+ self.base = base
168
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
169
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
170
+
171
+ # Build here to make `torch.jit.trace` work.
172
+ self._set_cos_sin_cache(
173
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
174
+ )
175
+
176
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
177
+ self.max_seq_len_cached = seq_len
178
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
179
+
180
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
181
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
182
+ emb = torch.cat((freqs, freqs), dim=-1)
183
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
184
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
185
+
186
+ def forward(self, x, seq_len=None):
187
+ # x: [bs, num_attention_heads, seq_len, head_size]
188
+ if seq_len > self.max_seq_len_cached:
189
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
190
+
191
+ return (
192
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
193
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
194
+ )
195
+
196
+
197
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
198
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
199
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
200
+
201
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
202
+ self.scaling_factor = scaling_factor
203
+ super().__init__(dim, max_position_embeddings, base, device)
204
+
205
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
206
+ self.max_seq_len_cached = seq_len
207
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
208
+ t = t / self.scaling_factor
209
+
210
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
211
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
212
+ emb = torch.cat((freqs, freqs), dim=-1)
213
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
214
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
215
+
216
+
217
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
218
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
219
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
220
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
221
+ """
222
+
223
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
224
+ self.scaling_factor = scaling_factor
225
+ super().__init__(dim, max_position_embeddings, base, device)
226
+
227
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
228
+ self.max_seq_len_cached = seq_len
229
+
230
+ if seq_len > self.max_position_embeddings:
231
+ base = self.base * (
232
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
233
+ ) ** (self.dim / (self.dim - 2))
234
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
235
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
236
+
237
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
238
+
239
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
240
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
241
+ emb = torch.cat((freqs, freqs), dim=-1)
242
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
243
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
244
+
245
+
246
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
247
+ def rotate_half(x):
248
+ """Rotates half the hidden dims of the input."""
249
+ x1 = x[..., : x.shape[-1] // 2]
250
+ x2 = x[..., x.shape[-1] // 2:]
251
+ return torch.cat((-x2, x1), dim=-1)
252
+
253
+
254
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
255
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
256
+ """Applies Rotary Position Embedding to the query and key tensors."""
257
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
258
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
259
+ q_embed = (q * cos) + (rotate_half(q) * sin)
260
+ k_embed = (k * cos) + (rotate_half(k) * sin)
261
+ return q_embed, k_embed
262
+
263
+
264
+ class InternLM2MLP(nn.Module):
265
+ def __init__(self, config):
266
+ super().__init__()
267
+ self.config = config
268
+ self.hidden_size = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
271
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
272
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
273
+ self.act_fn = ACT2FN[config.hidden_act]
274
+
275
+ def forward(self, x):
276
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
277
+
278
+ return down_proj
279
+
280
+
281
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
282
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
283
+ """
284
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
285
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
286
+ """
287
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
288
+ if n_rep == 1:
289
+ return hidden_states
290
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
291
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
292
+
293
+
294
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
295
+ class InternLM2Attention(nn.Module):
296
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
297
+
298
+ def __init__(self, config: InternLM2Config):
299
+ super().__init__()
300
+ self.config = config
301
+ self.hidden_size = config.hidden_size
302
+ self.num_heads = config.num_attention_heads
303
+ self.head_dim = self.hidden_size // self.num_heads
304
+ self.num_key_value_heads = config.num_key_value_heads
305
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
306
+ self.max_position_embeddings = config.max_position_embeddings
307
+ self.is_causal = True
308
+
309
+ if (self.head_dim * self.num_heads) != self.hidden_size:
310
+ raise ValueError(
311
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
312
+ f' and `num_heads`: {self.num_heads}).'
313
+ )
314
+
315
+ self.wqkv = nn.Linear(
316
+ self.hidden_size,
317
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
318
+ bias=config.bias,
319
+ )
320
+
321
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
322
+ self._init_rope()
323
+
324
+ def _init_rope(self):
325
+ if self.config.rope_scaling is None:
326
+ self.rotary_emb = InternLM2RotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ base=self.config.rope_theta,
330
+ )
331
+ else:
332
+ scaling_type = self.config.rope_scaling['type']
333
+ scaling_factor = self.config.rope_scaling['factor']
334
+ if scaling_type == 'dynamic':
335
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
336
+ self.head_dim,
337
+ max_position_embeddings=self.max_position_embeddings,
338
+ base=self.config.rope_theta,
339
+ scaling_factor=scaling_factor,
340
+ )
341
+ elif scaling_type == 'linear':
342
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
343
+ self.head_dim,
344
+ max_position_embeddings=self.max_position_embeddings,
345
+ base=self.config.rope_theta,
346
+ scaling_factor=scaling_factor,
347
+ )
348
+ else:
349
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
350
+ return self.rotary_emb
351
+
352
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
353
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
354
+
355
+ def forward(
356
+ self,
357
+ hidden_states: torch.Tensor,
358
+ attention_mask: Optional[torch.Tensor] = None,
359
+ position_ids: Optional[torch.LongTensor] = None,
360
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
361
+ output_attentions: bool = False,
362
+ use_cache: bool = False,
363
+ **kwargs,
364
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
365
+ if 'padding_mask' in kwargs:
366
+ warnings.warn(
367
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
368
+ 'Please make sure use `attention_mask` instead.`'
369
+ )
370
+
371
+ bsz, q_len, _ = hidden_states.size()
372
+
373
+ qkv_states = self.wqkv(hidden_states)
374
+
375
+ qkv_states = rearrange(
376
+ qkv_states,
377
+ 'b q (h gs d) -> b q h gs d',
378
+ gs=2 + self.num_key_value_groups,
379
+ d=self.head_dim,
380
+ )
381
+
382
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
383
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
384
+ key_states = qkv_states[..., -2, :]
385
+ value_states = qkv_states[..., -1, :]
386
+
387
+ query_states = query_states.transpose(1, 2)
388
+ key_states = key_states.transpose(1, 2)
389
+ value_states = value_states.transpose(1, 2)
390
+
391
+ kv_seq_len = key_states.shape[-2]
392
+ if past_key_value is not None:
393
+ kv_seq_len += past_key_value[0].shape[-2]
394
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
395
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
396
+
397
+ if past_key_value is not None:
398
+ # reuse k, v, self_attention
399
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
400
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
401
+
402
+ past_key_value = (key_states, value_states) if use_cache else None
403
+
404
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
405
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
406
+
407
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
408
+
409
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
410
+ raise ValueError(
411
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
412
+ f' {attn_weights.size()}'
413
+ )
414
+
415
+ if attention_mask is not None:
416
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
417
+ raise ValueError(
418
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
419
+ )
420
+ attn_weights = attn_weights + attention_mask
421
+
422
+ # upcast attention to fp32
423
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
424
+ attn_output = torch.matmul(attn_weights, value_states)
425
+
426
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
427
+ raise ValueError(
428
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
429
+ f' {attn_output.size()}'
430
+ )
431
+
432
+ attn_output = attn_output.transpose(1, 2).contiguous()
433
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
434
+
435
+ attn_output = self.wo(attn_output)
436
+
437
+ if not output_attentions:
438
+ attn_weights = None
439
+
440
+ return attn_output, attn_weights, past_key_value
441
+
442
+
443
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
444
+ class InternLM2FlashAttention2(InternLM2Attention):
445
+ """
446
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
447
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
448
+ flash attention and deal with padding tokens in case the input contains any of them.
449
+ """
450
+
451
+ def forward(
452
+ self,
453
+ hidden_states: torch.Tensor,
454
+ attention_mask: Optional[torch.LongTensor] = None,
455
+ position_ids: Optional[torch.LongTensor] = None,
456
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
457
+ output_attentions: bool = False,
458
+ use_cache: bool = False,
459
+ **kwargs,
460
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
461
+ # InternLM2FlashAttention2 attention does not support output_attentions
462
+ if 'padding_mask' in kwargs:
463
+ warnings.warn(
464
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
465
+ 'Please make sure use `attention_mask` instead.`'
466
+ )
467
+
468
+ # overwrite attention_mask with padding_mask
469
+ attention_mask = kwargs.pop('padding_mask')
470
+
471
+ output_attentions = False
472
+
473
+ bsz, q_len, _ = hidden_states.size()
474
+
475
+ qkv_states = self.wqkv(hidden_states)
476
+
477
+ qkv_states = rearrange(
478
+ qkv_states,
479
+ 'b q (h gs d) -> b q h gs d',
480
+ gs=2 + self.num_key_value_groups,
481
+ d=self.head_dim,
482
+ )
483
+
484
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
485
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
486
+ key_states = qkv_states[..., -2, :]
487
+ value_states = qkv_states[..., -1, :]
488
+
489
+ query_states = query_states.transpose(1, 2)
490
+ key_states = key_states.transpose(1, 2)
491
+ value_states = value_states.transpose(1, 2)
492
+
493
+ kv_seq_len = key_states.shape[-2]
494
+ if past_key_value is not None:
495
+ kv_seq_len += past_key_value[0].shape[-2]
496
+
497
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
498
+
499
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
500
+
501
+ if past_key_value is not None:
502
+ # reuse k, v, self_attention
503
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
504
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
505
+
506
+ past_key_value = (key_states, value_states) if use_cache else None
507
+
508
+ query_states = query_states.transpose(1, 2)
509
+ key_states = key_states.transpose(1, 2)
510
+ value_states = value_states.transpose(1, 2)
511
+
512
+ attn_output = self._flash_attention_forward(
513
+ query_states, key_states, value_states, attention_mask, q_len
514
+ )
515
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
516
+ attn_output = self.wo(attn_output)
517
+
518
+ if not output_attentions:
519
+ attn_weights = None
520
+
521
+ return attn_output, attn_weights, past_key_value
522
+
523
+ def _flash_attention_forward(
524
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
525
+ ):
526
+ """
527
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
528
+ first unpad the input, then computes the attention scores and pad the final attention scores.
529
+
530
+ Args:
531
+ query_states (`torch.Tensor`):
532
+ Input query states to be passed to Flash Attention API
533
+ key_states (`torch.Tensor`):
534
+ Input key states to be passed to Flash Attention API
535
+ value_states (`torch.Tensor`):
536
+ Input value states to be passed to Flash Attention API
537
+ attention_mask (`torch.Tensor`):
538
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
539
+ position of padding tokens and 1 for the position of non-padding tokens.
540
+ dropout (`int`, *optional*):
541
+ Attention dropout
542
+ softmax_scale (`float`, *optional*):
543
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
544
+ """
545
+ # Contains at least one padding token in the sequence
546
+ causal = self.is_causal and query_length != 1
547
+ if attention_mask is not None:
548
+ batch_size = query_states.shape[0]
549
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
550
+ query_states, key_states, value_states, attention_mask, query_length
551
+ )
552
+
553
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
554
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
555
+
556
+ attn_output_unpad = flash_attn_varlen_func(
557
+ query_states,
558
+ key_states,
559
+ value_states,
560
+ cu_seqlens_q=cu_seqlens_q,
561
+ cu_seqlens_k=cu_seqlens_k,
562
+ max_seqlen_q=max_seqlen_in_batch_q,
563
+ max_seqlen_k=max_seqlen_in_batch_k,
564
+ dropout_p=dropout,
565
+ softmax_scale=softmax_scale,
566
+ causal=causal,
567
+ )
568
+
569
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
570
+ else:
571
+ attn_output = flash_attn_func(
572
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
573
+ )
574
+
575
+ return attn_output
576
+
577
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
578
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
579
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
580
+
581
+ key_layer = index_first_axis(
582
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
583
+ )
584
+ value_layer = index_first_axis(
585
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
586
+ )
587
+
588
+ if query_length == kv_seq_len:
589
+ query_layer = index_first_axis(
590
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
591
+ )
592
+ cu_seqlens_q = cu_seqlens_k
593
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
594
+ indices_q = indices_k
595
+ elif query_length == 1:
596
+ max_seqlen_in_batch_q = 1
597
+ cu_seqlens_q = torch.arange(
598
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
599
+ ) # There is a memcpy here, that is very bad.
600
+ indices_q = cu_seqlens_q[:-1]
601
+ query_layer = query_layer.squeeze(1)
602
+ else:
603
+ # The -q_len: slice assumes left padding.
604
+ attention_mask = attention_mask[:, -query_length:]
605
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
606
+
607
+ return (
608
+ query_layer,
609
+ key_layer,
610
+ value_layer,
611
+ indices_q.to(torch.int64),
612
+ (cu_seqlens_q, cu_seqlens_k),
613
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
614
+ )
615
+
616
+
617
+ INTERNLM2_ATTENTION_CLASSES = {
618
+ 'eager': InternLM2Attention,
619
+ 'flash_attention_2': InternLM2FlashAttention2,
620
+ }
621
+
622
+
623
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
624
+ class InternLM2DecoderLayer(nn.Module):
625
+ def __init__(self, config: InternLM2Config):
626
+ super().__init__()
627
+ self.hidden_size = config.hidden_size
628
+
629
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
630
+
631
+ self.feed_forward = InternLM2MLP(config)
632
+ #visual expert copied from self.feed_forward
633
+ self.feed_forward_ve = InternLM2MLP(config)
634
+
635
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
636
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
637
+
638
+ def forward(
639
+ self,
640
+ hidden_states: torch.Tensor,
641
+ attention_mask: Optional[torch.Tensor] = None,
642
+ position_ids: Optional[torch.LongTensor] = None,
643
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
644
+ output_attentions: Optional[bool] = False,
645
+ use_cache: Optional[bool] = False,
646
+ visual_token_mask: Optional[torch.Tensor] = None,
647
+ **kwargs,
648
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
649
+ """
650
+ Args:
651
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
652
+ attention_mask (`torch.FloatTensor`, *optional*):
653
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
654
+ query_sequence_length, key_sequence_length)` if default attention is used.
655
+ output_attentions (`bool`, *optional*):
656
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
657
+ returned tensors for more detail.
658
+ use_cache (`bool`, *optional*):
659
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
660
+ (see `past_key_values`).
661
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
662
+ """
663
+ # print(visual_token_mask,past_key_value)
664
+ assert visual_token_mask is not None or past_key_value is not None
665
+ if 'padding_mask' in kwargs:
666
+ warnings.warn(
667
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
668
+ 'Please make sure use `attention_mask` instead.`'
669
+ )
670
+
671
+ residual = hidden_states
672
+
673
+ hidden_states = self.attention_norm(hidden_states)
674
+
675
+ # Self Attention
676
+ hidden_states, self_attn_weights, present_key_value = self.attention(
677
+ hidden_states=hidden_states,
678
+ attention_mask=attention_mask,
679
+ position_ids=position_ids,
680
+ past_key_value=past_key_value,
681
+ output_attentions=output_attentions,
682
+ use_cache=use_cache,
683
+ **kwargs,
684
+ )
685
+ hidden_states = residual + hidden_states
686
+
687
+ # Fully Connected
688
+ residual = hidden_states
689
+ hidden_states = self.ffn_norm(hidden_states)
690
+
691
+ if past_key_value is None:
692
+ ##############################################################################################################
693
+ if self.training:
694
+ hidden_states = self.feed_forward(hidden_states)*(1.-visual_token_mask)+ self.feed_forward_ve(hidden_states)*visual_token_mask
695
+ else:
696
+ dim=hidden_states.shape[-1]
697
+ visual_token_mask=visual_token_mask.repeat(1,1,dim).bool()
698
+ non_visual_token_mask=~visual_token_mask
699
+ if visual_token_mask.any():
700
+ hidden_states[visual_token_mask] = self.feed_forward_ve(hidden_states[visual_token_mask].reshape(-1,dim)).reshape(-1)
701
+ if (non_visual_token_mask).any():
702
+ hidden_states[non_visual_token_mask] = self.feed_forward(hidden_states[non_visual_token_mask].reshape(-1,dim)).reshape(-1)
703
+ ##############################################################################################################
704
+ else:
705
+ hidden_states = self.feed_forward(hidden_states)
706
+
707
+ hidden_states = residual + hidden_states
708
+
709
+ outputs = (hidden_states,)
710
+
711
+ if output_attentions:
712
+ outputs += (self_attn_weights,)
713
+
714
+ if use_cache:
715
+ outputs += (present_key_value,)
716
+
717
+ return outputs
718
+
719
+
720
+ InternLM2_START_DOCSTRING = r"""
721
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
722
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
723
+ etc.)
724
+
725
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
726
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
727
+ and behavior.
728
+
729
+ Parameters:
730
+ config ([`InternLM2Config`]):
731
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
732
+ load the weights associated with the model, only the configuration. Check out the
733
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
734
+ """
735
+
736
+
737
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
738
+ @add_start_docstrings(
739
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
740
+ InternLM2_START_DOCSTRING,
741
+ )
742
+ class InternLM2PreTrainedModel(PreTrainedModel):
743
+ config_class = InternLM2Config
744
+ base_model_prefix = 'model'
745
+ supports_gradient_checkpointing = True
746
+ _no_split_modules = ['InternLM2DecoderLayer']
747
+ _skip_keys_device_placement = 'past_key_values'
748
+
749
+ def _init_weights(self, module):
750
+ std = self.config.initializer_range
751
+ if isinstance(module, nn.Linear):
752
+ module.weight.data.normal_(mean=0.0, std=std)
753
+ if module.bias is not None:
754
+ module.bias.data.zero_()
755
+ elif isinstance(module, nn.Embedding):
756
+ module.weight.data.normal_(mean=0.0, std=std)
757
+ if module.padding_idx is not None:
758
+ module.weight.data[module.padding_idx].zero_()
759
+
760
+
761
+ InternLM2_INPUTS_DOCSTRING = r"""
762
+ Args:
763
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
764
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
765
+ it.
766
+
767
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
768
+ [`PreTrainedTokenizer.__call__`] for details.
769
+
770
+ [What are input IDs?](../glossary#input-ids)
771
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
772
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
773
+
774
+ - 1 for tokens that are **not masked**,
775
+ - 0 for tokens that are **masked**.
776
+
777
+ [What are attention masks?](../glossary#attention-mask)
778
+
779
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
780
+ [`PreTrainedTokenizer.__call__`] for details.
781
+
782
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
783
+ `past_key_values`).
784
+
785
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
786
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
787
+ information on the default strategy.
788
+
789
+ - 1 indicates the head is **not masked**,
790
+ - 0 indicates the head is **masked**.
791
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
792
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
793
+ config.n_positions - 1]`.
794
+
795
+ [What are position IDs?](../glossary#position-ids)
796
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
797
+ when `config.use_cache=True`):
798
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
799
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
800
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
801
+
802
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
803
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
804
+
805
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
806
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
807
+ of shape `(batch_size, sequence_length)`.
808
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
809
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
810
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
811
+ model's internal embedding lookup matrix.
812
+ use_cache (`bool`, *optional*):
813
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
814
+ `past_key_values`).
815
+ output_attentions (`bool`, *optional*):
816
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
817
+ tensors for more detail.
818
+ output_hidden_states (`bool`, *optional*):
819
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
820
+ more detail.
821
+ return_dict (`bool`, *optional*):
822
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
823
+ """
824
+
825
+
826
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
827
+ @add_start_docstrings(
828
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
829
+ InternLM2_START_DOCSTRING,
830
+ )
831
+ class InternLM2Model(InternLM2PreTrainedModel):
832
+ """
833
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
834
+
835
+ Args:
836
+ config: InternLM2Config
837
+ """
838
+
839
+ _auto_class = 'AutoModel'
840
+
841
+ def __init__(self, config: InternLM2Config):
842
+ super().__init__(config)
843
+ self.padding_idx = config.pad_token_id
844
+ self.vocab_size = config.vocab_size
845
+ self.config = config
846
+ if not has_flash_attn:
847
+ self.config.attn_implementation = 'eager'
848
+ print('Warning: Flash attention is not available, using eager attention instead.')
849
+
850
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
851
+
852
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
853
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
854
+
855
+ self.gradient_checkpointing = False
856
+ # Initialize weights and apply final processing
857
+ self.post_init()
858
+
859
+ def get_input_embeddings(self):
860
+ return self.tok_embeddings
861
+
862
+ def set_input_embeddings(self, value):
863
+ self.tok_embeddings = value
864
+
865
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
866
+ # create causal mask
867
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
868
+ combined_attention_mask = None
869
+ if input_shape[-1] > 1:
870
+ combined_attention_mask = _make_causal_mask(
871
+ input_shape,
872
+ inputs_embeds.dtype,
873
+ device=inputs_embeds.device,
874
+ past_key_values_length=past_key_values_length,
875
+ )
876
+
877
+ if attention_mask is not None:
878
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
879
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
880
+ inputs_embeds.device
881
+ )
882
+ combined_attention_mask = (
883
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
884
+ )
885
+
886
+ return combined_attention_mask
887
+
888
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
889
+ def forward(
890
+ self,
891
+ input_ids: torch.LongTensor = None,
892
+ attention_mask: Optional[torch.Tensor] = None,
893
+ position_ids: Optional[torch.LongTensor] = None,
894
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
895
+ inputs_embeds: Optional[torch.FloatTensor] = None,
896
+ use_cache: Optional[bool] = None,
897
+ output_attentions: Optional[bool] = None,
898
+ output_hidden_states: Optional[bool] = None,
899
+ return_dict: Optional[bool] = None,
900
+ visual_token_mask: Optional[torch.Tensor] = None
901
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
902
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
903
+ output_hidden_states = (
904
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
905
+ )
906
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
907
+
908
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
909
+
910
+ if self.config.attn_implementation == 'flash_attention_2':
911
+ _import_flash_attn()
912
+
913
+ # retrieve input_ids and inputs_embeds
914
+ if input_ids is not None and inputs_embeds is not None:
915
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
916
+ elif input_ids is not None:
917
+ batch_size, seq_length = input_ids.shape[:2]
918
+ elif inputs_embeds is not None:
919
+ batch_size, seq_length = inputs_embeds.shape[:2]
920
+ else:
921
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
922
+
923
+ seq_length_with_past = seq_length
924
+ past_key_values_length = 0
925
+ if past_key_values is not None:
926
+ past_key_values_length = past_key_values[0][0].shape[2]
927
+ seq_length_with_past = seq_length_with_past + past_key_values_length
928
+
929
+ if position_ids is None:
930
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
931
+ position_ids = torch.arange(
932
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
933
+ )
934
+ position_ids = position_ids.unsqueeze(0)
935
+
936
+ if inputs_embeds is None:
937
+ inputs_embeds = self.tok_embeddings(input_ids)
938
+
939
+ if self.config.attn_implementation == 'flash_attention_2':
940
+ # 2d mask is passed through the layers
941
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
942
+ else:
943
+ if attention_mask is None:
944
+ attention_mask = torch.ones(
945
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
946
+ )
947
+ attention_mask = self._prepare_decoder_attention_mask(
948
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
949
+ )
950
+
951
+ # embed positions
952
+ hidden_states = inputs_embeds
953
+
954
+ if self.gradient_checkpointing and self.training:
955
+ if use_cache:
956
+ logger.warning_once(
957
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
958
+ )
959
+ use_cache = False
960
+
961
+ # decoder layers
962
+ all_hidden_states = () if output_hidden_states else None
963
+ all_self_attns = () if output_attentions else None
964
+ next_decoder_cache = () if use_cache else None
965
+
966
+ for idx, decoder_layer in enumerate(self.layers):
967
+ if output_hidden_states:
968
+ all_hidden_states += (hidden_states,)
969
+
970
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
971
+
972
+ if self.gradient_checkpointing and self.training:
973
+
974
+ def create_custom_forward(module):
975
+ def custom_forward(*inputs):
976
+ # None for past_key_value
977
+ return module(*inputs[:-1], output_attentions, None, visual_token_mask=inputs[-1])
978
+
979
+ return custom_forward
980
+
981
+ layer_outputs = torch.utils.checkpoint.checkpoint(
982
+ create_custom_forward(decoder_layer),
983
+ hidden_states,
984
+ attention_mask,
985
+ position_ids,
986
+ None,
987
+ visual_token_mask
988
+ )
989
+ else:
990
+ layer_outputs = decoder_layer(
991
+ hidden_states,
992
+ attention_mask=attention_mask,
993
+ position_ids=position_ids,
994
+ past_key_value=past_key_value,
995
+ output_attentions=output_attentions,
996
+ use_cache=use_cache,
997
+ visual_token_mask=visual_token_mask
998
+ )
999
+
1000
+ hidden_states = layer_outputs[0]
1001
+
1002
+ if use_cache:
1003
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1004
+
1005
+ if output_attentions:
1006
+ all_self_attns += (layer_outputs[1],)
1007
+
1008
+ hidden_states = self.norm(hidden_states)
1009
+
1010
+ # add hidden states from the last decoder layer
1011
+ if output_hidden_states:
1012
+ all_hidden_states += (hidden_states,)
1013
+
1014
+ next_cache = next_decoder_cache if use_cache else None
1015
+ if not return_dict:
1016
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1017
+ return BaseModelOutputWithPast(
1018
+ last_hidden_state=hidden_states,
1019
+ past_key_values=next_cache,
1020
+ hidden_states=all_hidden_states,
1021
+ attentions=all_self_attns,
1022
+ )
1023
+
1024
+
1025
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1026
+ class InternLM2VEForCausalLM(InternLM2PreTrainedModel):
1027
+ _auto_class = 'AutoModelForCausalLM'
1028
+
1029
+ _tied_weights_keys = ['output.weight']
1030
+
1031
+ def __init__(self, config):
1032
+ super().__init__(config)
1033
+ self.model = InternLM2Model(config)
1034
+ self.vocab_size = config.vocab_size
1035
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1036
+
1037
+ # Initialize weights and apply final processing
1038
+ self.post_init()
1039
+
1040
+ def get_input_embeddings(self):
1041
+ return self.model.tok_embeddings
1042
+
1043
+ def set_input_embeddings(self, value):
1044
+ self.model.tok_embeddings = value
1045
+
1046
+ def get_output_embeddings(self):
1047
+ return self.output
1048
+
1049
+ def set_output_embeddings(self, new_embeddings):
1050
+ self.output = new_embeddings
1051
+
1052
+ def set_decoder(self, decoder):
1053
+ self.model = decoder
1054
+
1055
+ def get_decoder(self):
1056
+ return self.model
1057
+
1058
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1059
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1060
+ def forward(
1061
+ self,
1062
+ input_ids: torch.LongTensor = None,
1063
+ attention_mask: Optional[torch.Tensor] = None,
1064
+ position_ids: Optional[torch.LongTensor] = None,
1065
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1066
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1067
+ labels: Optional[torch.LongTensor] = None,
1068
+ use_cache: Optional[bool] = None,
1069
+ output_attentions: Optional[bool] = None,
1070
+ output_hidden_states: Optional[bool] = None,
1071
+ return_dict: Optional[bool] = None,
1072
+ visual_token_mask: Optional[torch.Tensor] = None
1073
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1074
+ r"""
1075
+ Args:
1076
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1077
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1078
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1079
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1080
+
1081
+ Returns:
1082
+
1083
+ Example:
1084
+
1085
+ ```python
1086
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1087
+
1088
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1089
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1090
+
1091
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1092
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1093
+
1094
+ >>> # Generate
1095
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1096
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1097
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1098
+ ```"""
1099
+
1100
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1101
+ output_hidden_states = (
1102
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1103
+ )
1104
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1105
+
1106
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1107
+ outputs = self.model(
1108
+ input_ids=input_ids,
1109
+ attention_mask=attention_mask,
1110
+ position_ids=position_ids,
1111
+ past_key_values=past_key_values,
1112
+ inputs_embeds=inputs_embeds,
1113
+ use_cache=use_cache,
1114
+ output_attentions=output_attentions,
1115
+ output_hidden_states=output_hidden_states,
1116
+ return_dict=return_dict,
1117
+ visual_token_mask=visual_token_mask
1118
+ )
1119
+
1120
+ hidden_states = outputs[0]
1121
+ logits = self.output(hidden_states)
1122
+ logits = logits.float()
1123
+
1124
+ loss = None
1125
+ if labels is not None:
1126
+ # Shift so that tokens < n predict n
1127
+ shift_logits = logits[..., :-1, :].contiguous()
1128
+ shift_labels = labels[..., 1:].contiguous()
1129
+ # Flatten the tokens
1130
+ loss_fct = CrossEntropyLoss()
1131
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1132
+ shift_labels = shift_labels.view(-1)
1133
+ # Enable model parallelism
1134
+ shift_labels = shift_labels.to(shift_logits.device)
1135
+ loss = loss_fct(shift_logits, shift_labels)
1136
+
1137
+ if not return_dict:
1138
+ output = (logits,) + outputs[1:]
1139
+ return (loss,) + output if loss is not None else output
1140
+
1141
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1142
+ output = CausalLMOutputWithPast(
1143
+ loss=loss,
1144
+ logits=logits,
1145
+ past_key_values=outputs.past_key_values,
1146
+ hidden_states=outputs.hidden_states,
1147
+ attentions=outputs.attentions,
1148
+ )
1149
+ output['logits'] = output['logits'].to(device)
1150
+ return output
1151
+
1152
+ def prepare_inputs_for_generation(
1153
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1154
+ ):
1155
+ if past_key_values is not None:
1156
+ past_length = past_key_values[0][0].shape[2]
1157
+
1158
+ # Some generation methods already pass only the last input ID
1159
+ if input_ids.shape[1] > past_length:
1160
+ remove_prefix_length = past_length
1161
+ else:
1162
+ # Default to old behavior: keep only final ID
1163
+ remove_prefix_length = input_ids.shape[1] - 1
1164
+
1165
+ input_ids = input_ids[:, remove_prefix_length:]
1166
+
1167
+ position_ids = kwargs.get('position_ids', None)
1168
+ if attention_mask is not None and position_ids is None:
1169
+ # create position_ids on the fly for batch generation
1170
+ position_ids = attention_mask.long().cumsum(-1) - 1
1171
+ position_ids.masked_fill_(attention_mask == 0, 1)
1172
+ if past_key_values:
1173
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1174
+
1175
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1176
+ if inputs_embeds is not None and past_key_values is None:
1177
+ model_inputs = {'inputs_embeds': inputs_embeds}
1178
+ else:
1179
+ model_inputs = {'input_ids': input_ids}
1180
+
1181
+ model_inputs.update(
1182
+ {
1183
+ 'position_ids': position_ids,
1184
+ 'past_key_values': past_key_values,
1185
+ 'use_cache': kwargs.get('use_cache'),
1186
+ 'attention_mask': attention_mask,
1187
+ 'visual_token_mask': kwargs.get('visual_token_mask')
1188
+ }
1189
+ )
1190
+ return model_inputs
1191
+
1192
+ @staticmethod
1193
+ def _reorder_cache(past_key_values, beam_idx):
1194
+ reordered_past = ()
1195
+ for layer_past in past_key_values:
1196
+ reordered_past += (
1197
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1198
+ )
1199
+ return reordered_past
1200
+
1201
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1202
+ if tokenizer.add_bos_token:
1203
+ prompt = ''
1204
+ else:
1205
+ prompt = tokenizer.bos_token
1206
+ if meta_instruction:
1207
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1208
+ for record in history:
1209
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1210
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1211
+ return tokenizer([prompt], return_tensors='pt')
1212
+
1213
+ @torch.no_grad()
1214
+ def chat(
1215
+ self,
1216
+ tokenizer,
1217
+ query: str,
1218
+ history: List[Tuple[str, str]] = [],
1219
+ streamer: Optional[BaseStreamer] = None,
1220
+ max_new_tokens: int = 1024,
1221
+ do_sample: bool = True,
1222
+ temperature: float = 0.8,
1223
+ top_p: float = 0.8,
1224
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1225
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1226
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1227
+ **kwargs,
1228
+ ):
1229
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1230
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1231
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1232
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1233
+ outputs = self.generate(
1234
+ **inputs,
1235
+ streamer=streamer,
1236
+ max_new_tokens=max_new_tokens,
1237
+ do_sample=do_sample,
1238
+ temperature=temperature,
1239
+ top_p=top_p,
1240
+ eos_token_id=eos_token_id,
1241
+ **kwargs,
1242
+ )
1243
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
1244
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1245
+ response = response.split('<|im_end|>')[0]
1246
+ history = history + [(query, response)]
1247
+ return response, history
1248
+
1249
+ @torch.no_grad()
1250
+ def stream_chat(
1251
+ self,
1252
+ tokenizer,
1253
+ query: str,
1254
+ history: List[Tuple[str, str]] = [],
1255
+ max_new_tokens: int = 1024,
1256
+ do_sample: bool = True,
1257
+ temperature: float = 0.8,
1258
+ top_p: float = 0.8,
1259
+ **kwargs,
1260
+ ):
1261
+ """
1262
+ Return a generator in format: (response, history)
1263
+ Eg.
1264
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1265
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1266
+ """
1267
+ if BaseStreamer is None:
1268
+ raise ModuleNotFoundError(
1269
+ 'The version of `transformers` is too low. Please make sure '
1270
+ 'that you have installed `transformers>=4.28.0`.'
1271
+ )
1272
+
1273
+ response_queue = queue.Queue(maxsize=20)
1274
+
1275
+ class ChatStreamer(BaseStreamer):
1276
+ def __init__(self, tokenizer) -> None:
1277
+ super().__init__()
1278
+ self.tokenizer = tokenizer
1279
+ self.queue = response_queue
1280
+ self.query = query
1281
+ self.history = history
1282
+ self.response = ''
1283
+ self.cache = []
1284
+ self.received_inputs = False
1285
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1286
+
1287
+ def put(self, value):
1288
+ if len(value.shape) > 1 and value.shape[0] > 1:
1289
+ raise ValueError('ChatStreamer only supports batch size 1')
1290
+ elif len(value.shape) > 1:
1291
+ value = value[0]
1292
+
1293
+ if not self.received_inputs:
1294
+ # The first received value is input_ids, ignore here
1295
+ self.received_inputs = True
1296
+ return
1297
+
1298
+ self.cache.extend(value.tolist())
1299
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1300
+ if token.strip() != '<|im_end|>':
1301
+ self.response = self.response + token
1302
+ history = self.history + [(self.query, self.response)]
1303
+ self.queue.put((self.response, history))
1304
+ self.cache = []
1305
+ else:
1306
+ self.end()
1307
+
1308
+ def end(self):
1309
+ self.queue.put(None)
1310
+
1311
+ def stream_producer():
1312
+ return self.chat(
1313
+ tokenizer=tokenizer,
1314
+ query=query,
1315
+ streamer=ChatStreamer(tokenizer=tokenizer),
1316
+ history=history,
1317
+ max_new_tokens=max_new_tokens,
1318
+ do_sample=do_sample,
1319
+ temperature=temperature,
1320
+ top_p=top_p,
1321
+ **kwargs,
1322
+ )
1323
+
1324
+ def consumer():
1325
+ producer = threading.Thread(target=stream_producer)
1326
+ producer.start()
1327
+ while True:
1328
+ res = response_queue.get()
1329
+ if res is None:
1330
+ return
1331
+ yield res
1332
+
1333
+ return consumer()
1334
+
1335
+
1336
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1337
+ @add_start_docstrings(
1338
+ """
1339
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1340
+
1341
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1342
+ as other causal models (e.g. GPT-2) do.
1343
+
1344
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1345
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1346
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1347
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1348
+ each row of the batch).
1349
+ """,
1350
+ InternLM2_START_DOCSTRING,
1351
+ )
1352
+ class InternLM2VEForSequenceClassification(InternLM2PreTrainedModel):
1353
+ def __init__(self, config):
1354
+ super().__init__(config)
1355
+ self.num_labels = config.num_labels
1356
+ self.model = InternLM2Model(config)
1357
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1358
+
1359
+ # Initialize weights and apply final processing
1360
+ self.post_init()
1361
+
1362
+ def get_input_embeddings(self):
1363
+ return self.model.tok_embeddings
1364
+
1365
+ def set_input_embeddings(self, value):
1366
+ self.model.tok_embeddings = value
1367
+
1368
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1369
+ def forward(
1370
+ self,
1371
+ input_ids: torch.LongTensor = None,
1372
+ attention_mask: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.LongTensor] = None,
1374
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1375
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1376
+ labels: Optional[torch.LongTensor] = None,
1377
+ use_cache: Optional[bool] = None,
1378
+ output_attentions: Optional[bool] = None,
1379
+ output_hidden_states: Optional[bool] = None,
1380
+ return_dict: Optional[bool] = None,
1381
+ visual_token_mask: Optional[torch.Tensor] = None
1382
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1383
+ r"""
1384
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1385
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1386
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1387
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1388
+ """
1389
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1390
+
1391
+ transformer_outputs = self.model(
1392
+ input_ids,
1393
+ attention_mask=attention_mask,
1394
+ position_ids=position_ids,
1395
+ past_key_values=past_key_values,
1396
+ inputs_embeds=inputs_embeds,
1397
+ use_cache=use_cache,
1398
+ output_attentions=output_attentions,
1399
+ output_hidden_states=output_hidden_states,
1400
+ return_dict=return_dict,
1401
+ visual_token_mask=visual_token_mask
1402
+ )
1403
+ hidden_states = transformer_outputs[0]
1404
+ logits = self.score(hidden_states)
1405
+
1406
+ if input_ids is not None:
1407
+ batch_size = input_ids.shape[0]
1408
+ else:
1409
+ batch_size = inputs_embeds.shape[0]
1410
+
1411
+ if self.config.pad_token_id is None and batch_size != 1:
1412
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1413
+ if self.config.pad_token_id is None:
1414
+ sequence_lengths = -1
1415
+ else:
1416
+ if input_ids is not None:
1417
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1418
+ logits.device
1419
+ )
1420
+ else:
1421
+ sequence_lengths = -1
1422
+
1423
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1424
+
1425
+ loss = None
1426
+ if labels is not None:
1427
+ labels = labels.to(logits.device)
1428
+ if self.config.problem_type is None:
1429
+ if self.num_labels == 1:
1430
+ self.config.problem_type = 'regression'
1431
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1432
+ self.config.problem_type = 'single_label_classification'
1433
+ else:
1434
+ self.config.problem_type = 'multi_label_classification'
1435
+
1436
+ if self.config.problem_type == 'regression':
1437
+ loss_fct = MSELoss()
1438
+ if self.num_labels == 1:
1439
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1440
+ else:
1441
+ loss = loss_fct(pooled_logits, labels)
1442
+ elif self.config.problem_type == 'single_label_classification':
1443
+ loss_fct = CrossEntropyLoss()
1444
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1445
+ elif self.config.problem_type == 'multi_label_classification':
1446
+ loss_fct = BCEWithLogitsLoss()
1447
+ loss = loss_fct(pooled_logits, labels)
1448
+ if not return_dict:
1449
+ output = (pooled_logits,) + transformer_outputs[1:]
1450
+ return ((loss,) + output) if loss is not None else output
1451
+
1452
+ return SequenceClassifierOutputWithPast(
1453
+ loss=loss,
1454
+ logits=pooled_logits,
1455
+ past_key_values=transformer_outputs.past_key_values,
1456
+ hidden_states=transformer_outputs.hidden_states,
1457
+ attentions=transformer_outputs.attentions,
1458
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.distributed as dist
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from .conversation import get_conv_template
13
+ from .modeling_internlm2_ve import InternLM2VEForCausalLM
14
+ from peft import LoraConfig, get_peft_model
15
+ from torch import nn
16
+ from torch.nn import CrossEntropyLoss
17
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
18
+ LlamaTokenizer, Qwen2ForCausalLM)
19
+ from transformers.modeling_outputs import CausalLMOutputWithPast
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import ModelOutput, logging
22
+ import math
23
+ from .configuration_internvl_chat import InternVLChatConfig
24
+ from .modeling_intern_patch import InternVisionPatchModel
25
+ from dataclasses import dataclass
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ def version_cmp(v1, v2, op='eq'):
31
+ import operator
32
+
33
+ from packaging import version
34
+ op_func = getattr(operator, op)
35
+ return op_func(version.parse(v1), version.parse(v2))
36
+
37
+ @dataclass
38
+ class CausalLMOutputWithVisualMask(ModelOutput):
39
+ """
40
+ Base class for causal language model (or autoregressive) outputs.
41
+
42
+ Args:
43
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
44
+ Language modeling loss (for next-token prediction).
45
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
46
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
47
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
48
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
49
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
50
+
51
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
52
+ `past_key_values` input) to speed up sequential decoding.
53
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
54
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
55
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
56
+
57
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
58
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
59
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
60
+ sequence_length)`.
61
+
62
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
63
+ heads.
64
+ """
65
+
66
+ loss: Optional[torch.FloatTensor] = None
67
+ logits: torch.FloatTensor = None
68
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
69
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
70
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
71
+ visual_token_mask : Optional[torch.FloatTensor] = None
72
+
73
+
74
+ class InternVLChatModel(PreTrainedModel):
75
+ config_class = InternVLChatConfig
76
+ main_input_name = 'pixel_values'
77
+ _no_split_modules = ['InternVisionPatchModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
78
+ 'Phi3DecoderLayer', 'Qwen2DecoderLayer']
79
+ _supports_flash_attn_2 = True
80
+
81
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
82
+ super().__init__(config)
83
+
84
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
85
+ image_size = config.force_image_size or config.vision_config.image_size
86
+ patch_size = config.vision_config.patch_size
87
+ self.patch_size = patch_size
88
+ self.select_layer = config.select_layer
89
+ self.template = config.template
90
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
91
+ self.downsample_ratio = config.downsample_ratio
92
+ self.ps_version = config.ps_version
93
+ self.llm_arch_name = config.llm_config.architectures[0]
94
+ self.use_visual_token_mask=False
95
+
96
+ logger.info(f'num_image_token: {self.num_image_token}')
97
+ logger.info(f'ps_version: {self.ps_version}')
98
+ if vision_model is not None:
99
+ self.vision_model = vision_model
100
+ else:
101
+ self.vision_model = InternVisionPatchModel(config.vision_config)
102
+
103
+
104
+ if language_model is not None:
105
+ self.language_model = language_model
106
+ else:
107
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
108
+ self.language_model = LlamaForCausalLM(config.llm_config)
109
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
110
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
111
+ elif config.llm_config.architectures[0]=='InternLM2VEForCausalLM':
112
+ self.language_model=InternLM2VEForCausalLM(config.llm_config)
113
+ self.use_visual_token_mask=True
114
+ else:
115
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
116
+
117
+ vit_hidden_size = config.vision_config.hidden_size
118
+ llm_hidden_size = config.llm_config.hidden_size
119
+
120
+ self.mlp1 = nn.Sequential(
121
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
122
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
123
+ nn.GELU(),
124
+ nn.Linear(llm_hidden_size, llm_hidden_size)
125
+ )
126
+
127
+ self.img_context_token_id = None
128
+ self.conv_template = get_conv_template(self.template)
129
+ if hasattr(config, 'system_message'):
130
+ self.system_message = config.system_message
131
+ else:
132
+ self.system_message = self.conv_template.system_message
133
+ self.num_samples = 0
134
+
135
+ if config.use_backbone_lora:
136
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
137
+
138
+ if config.use_llm_lora:
139
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
140
+
141
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
142
+ lora_config = LoraConfig(
143
+ r=r,
144
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
145
+ lora_alpha=lora_alpha,
146
+ lora_dropout=lora_dropout,
147
+ )
148
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
149
+ self.vision_model.print_trainable_parameters()
150
+
151
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
152
+ # Determine the target modules based on the architecture of the language model
153
+ if self.llm_arch_name == 'InternLM2ForCausalLM' or self.llm_arch_name == 'InternLM2VEForCausalLM':
154
+ target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
155
+ elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
156
+ target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
157
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
158
+ else:
159
+ raise NotImplemented
160
+ lora_config = LoraConfig(
161
+ r=r,
162
+ target_modules=target_modules,
163
+ lora_alpha=lora_alpha,
164
+ lora_dropout=lora_dropout,
165
+ task_type='CAUSAL_LM'
166
+ )
167
+ self.language_model = get_peft_model(self.language_model, lora_config)
168
+ self.language_model.enable_input_require_grads()
169
+ self.language_model.print_trainable_parameters()
170
+
171
+ def forward(
172
+ self,
173
+ pixel_values: torch.FloatTensor,
174
+ input_ids: torch.LongTensor = None,
175
+ attention_mask: Optional[torch.Tensor] = None,
176
+ position_ids: Optional[torch.LongTensor] = None,
177
+ image_flags: Optional[torch.LongTensor] = None,
178
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
179
+ labels: Optional[torch.LongTensor] = None,
180
+ use_cache: Optional[bool] = None,
181
+ output_attentions: Optional[bool] = None,
182
+ output_hidden_states: Optional[bool] = None,
183
+ return_dict: Optional[bool] = None,
184
+ ) -> Union[Tuple, CausalLMOutputWithVisualMask]:
185
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
186
+
187
+ image_flags = image_flags.squeeze(-1)
188
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
189
+
190
+ vit_embeds = self.extract_feature(pixel_values)
191
+ vit_embeds = vit_embeds[image_flags == 1]
192
+ vit_batch_size = pixel_values.shape[0]
193
+
194
+ B, N, C = input_embeds.shape
195
+ input_embeds = input_embeds.reshape(B * N, C)
196
+
197
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
198
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
199
+
200
+ input_ids = input_ids.reshape(B * N)
201
+ selected = (input_ids == self.img_context_token_id)
202
+ try:
203
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
204
+ ignore_flag = False
205
+ except Exception as e:
206
+ vit_embeds = vit_embeds.reshape(-1, C)
207
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
208
+ f'vit_embeds.shape={vit_embeds.shape}')
209
+ n_token = selected.sum()
210
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
211
+ ignore_flag = True
212
+
213
+ input_embeds = input_embeds.reshape(B, N, C)
214
+
215
+ if self.llm_arch_name=='InternLM2VEForCausalLM':
216
+ visual_token_mask = selected.reshape(B,N,1).to(input_embeds.dtype)
217
+ outputs = self.language_model(
218
+ inputs_embeds=input_embeds,
219
+ attention_mask=attention_mask,
220
+ position_ids=position_ids,
221
+ past_key_values=past_key_values,
222
+ use_cache=use_cache,
223
+ output_attentions=output_attentions,
224
+ output_hidden_states=output_hidden_states,
225
+ return_dict=return_dict,
226
+ visual_token_mask=visual_token_mask
227
+ )
228
+ else:
229
+ outputs = self.language_model(
230
+ inputs_embeds=input_embeds,
231
+ attention_mask=attention_mask,
232
+ position_ids=position_ids,
233
+ past_key_values=past_key_values,
234
+ use_cache=use_cache,
235
+ output_attentions=output_attentions,
236
+ output_hidden_states=output_hidden_states,
237
+ return_dict=return_dict
238
+ )
239
+ logits = outputs.logits
240
+
241
+ loss = None
242
+ if labels is not None:
243
+ # Shift so that tokens < n predict n
244
+ shift_logits = logits[..., :-1, :].contiguous()
245
+ shift_labels = labels[..., 1:].contiguous()
246
+ # Flatten the tokens
247
+ loss_fct = CrossEntropyLoss()
248
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
249
+ shift_labels = shift_labels.view(-1)
250
+ # Enable model parallelism
251
+ shift_labels = shift_labels.to(shift_logits.device)
252
+ loss = loss_fct(shift_logits, shift_labels)
253
+ if ignore_flag:
254
+ loss = loss * 0.0
255
+
256
+ if not return_dict:
257
+ output = (logits,) + outputs[1:]
258
+ return (loss,) + output if loss is not None else output
259
+
260
+ return CausalLMOutputWithPast(
261
+ loss=loss,
262
+ logits=logits,
263
+ past_key_values=outputs.past_key_values,
264
+ hidden_states=outputs.hidden_states,
265
+ attentions=outputs.attentions,
266
+ )
267
+
268
+ def pixel_shuffle(self, x, scale_factor=0.5):
269
+ n, w, h, c = x.size()
270
+ # N, W, H, C --> N, W, H * scale, C // scale
271
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
272
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
273
+ x = x.permute(0, 2, 1, 3).contiguous()
274
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
275
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
276
+ int(c / (scale_factor * scale_factor)))
277
+ if self.ps_version == 'v1':
278
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
279
+ 'which results in a transposed image.')
280
+ else:
281
+ x = x.permute(0, 2, 1, 3).contiguous()
282
+ return x
283
+
284
+ def extract_feature(self, pixel_values):
285
+ if self.select_layer == -1:
286
+ vit_embeds = self.vision_model(
287
+ pixel_values=pixel_values,
288
+ output_hidden_states=False,
289
+ return_dict=True).last_hidden_state
290
+ else:
291
+ vit_embeds = self.vision_model(
292
+ pixel_values=pixel_values,
293
+ output_hidden_states=True,
294
+ return_dict=True).hidden_states[self.select_layer]
295
+
296
+ if int(vit_embeds.shape[1] ** 0.5)**2 != vit_embeds.shape[1]:
297
+ vit_embeds = vit_embeds[:, 1:, :]
298
+
299
+ h = w = int(vit_embeds.shape[1] ** 0.5)
300
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
301
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
302
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
303
+ vit_embeds = self.mlp1(vit_embeds)
304
+ return vit_embeds
305
+
306
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
307
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
308
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
309
+ if history is not None or return_history:
310
+ print('Now multi-turn chat is not supported in batch_chat.')
311
+ raise NotImplementedError
312
+
313
+ if image_counts is not None:
314
+ num_patches_list = image_counts
315
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
316
+
317
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
318
+ self.img_context_token_id = img_context_token_id
319
+
320
+ if verbose and pixel_values is not None:
321
+ image_bs = pixel_values.shape[0]
322
+ print(f'dynamic ViT batch size: {image_bs}')
323
+
324
+ queries = []
325
+ for idx, num_patches in enumerate(num_patches_list):
326
+ question = questions[idx]
327
+ if pixel_values is not None and '<image>' not in question:
328
+ question = '<image>\n' + question
329
+ template = get_conv_template(self.template)
330
+ template.system_message = self.system_message
331
+ template.append_message(template.roles[0], question)
332
+ template.append_message(template.roles[1], None)
333
+ query = template.get_prompt()
334
+
335
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
336
+ query = query.replace('<image>', image_tokens, 1)
337
+ queries.append(query)
338
+
339
+ tokenizer.padding_side = 'left'
340
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
341
+ input_ids = model_inputs['input_ids'].cuda()
342
+ attention_mask = model_inputs['attention_mask'].cuda()
343
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
344
+ generation_config['eos_token_id'] = eos_token_id
345
+ generation_output = self.generate(
346
+ pixel_values=pixel_values,
347
+ input_ids=input_ids,
348
+ attention_mask=attention_mask,
349
+ **generation_config
350
+ )
351
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
352
+ responses = [response.split(template.sep)[0].strip() for response in responses]
353
+ return responses
354
+
355
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
356
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
357
+ verbose=False):
358
+
359
+ if history is None and pixel_values is not None and '<image>' not in question:
360
+ question = '<image>\n' + question
361
+
362
+ if num_patches_list is None:
363
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
364
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
365
+
366
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
367
+ self.img_context_token_id = img_context_token_id
368
+
369
+ template = get_conv_template(self.template)
370
+ template.system_message = self.system_message
371
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
372
+
373
+ history = [] if history is None else history
374
+ for (old_question, old_answer) in history:
375
+ template.append_message(template.roles[0], old_question)
376
+ template.append_message(template.roles[1], old_answer)
377
+ template.append_message(template.roles[0], question)
378
+ template.append_message(template.roles[1], None)
379
+ query = template.get_prompt()
380
+
381
+ if verbose and pixel_values is not None:
382
+ image_bs = pixel_values.shape[0]
383
+ print(f'dynamic ViT batch size: {image_bs}')
384
+
385
+ for num_patches in num_patches_list:
386
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
387
+ query = query.replace('<image>', image_tokens, 1)
388
+
389
+ model_inputs = tokenizer(query, return_tensors='pt')
390
+ input_ids = model_inputs['input_ids'].cuda()
391
+ attention_mask = model_inputs['attention_mask'].cuda()
392
+ generation_config['eos_token_id'] = eos_token_id
393
+ generation_output = self.generate(
394
+ pixel_values=pixel_values,
395
+ input_ids=input_ids,
396
+ attention_mask=attention_mask,
397
+ **generation_config
398
+ )
399
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
400
+ response = response.split(template.sep)[0].strip()
401
+ history.append((question, response))
402
+ if return_history:
403
+ return response, history
404
+ else:
405
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
406
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
407
+ if verbose:
408
+ print(query_to_print, response)
409
+ return response
410
+
411
+ @torch.no_grad()
412
+ def generate(
413
+ self,
414
+ pixel_values: Optional[torch.FloatTensor] = None,
415
+ input_ids: Optional[torch.FloatTensor] = None,
416
+ attention_mask: Optional[torch.LongTensor] = None,
417
+ visual_features: Optional[torch.FloatTensor] = None,
418
+ generation_config: Optional[GenerationConfig] = None,
419
+ output_hidden_states: Optional[bool] = None,
420
+ return_dict: Optional[bool] = None,
421
+ **generate_kwargs,
422
+ ) -> torch.LongTensor:
423
+
424
+ assert self.img_context_token_id is not None
425
+ if pixel_values is not None:
426
+ if visual_features is not None:
427
+ vit_embeds = visual_features
428
+ else:
429
+ vit_embeds = self.extract_feature(pixel_values)
430
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
431
+ B, N, C = input_embeds.shape
432
+ input_embeds = input_embeds.reshape(B * N, C)
433
+
434
+ input_ids = input_ids.reshape(B * N)
435
+ selected = (input_ids == self.img_context_token_id)
436
+ assert selected.sum() != 0
437
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
438
+
439
+ input_embeds = input_embeds.reshape(B, N, C)
440
+ visual_token_mask = selected.reshape(B, N, 1).to(input_embeds.dtype)
441
+ else:
442
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
443
+ B, N, C = input_embeds.shape
444
+ visual_token_mask = torch.zeros_like(input_ids).reshape(B, N, 1).to(input_embeds.dtype)
445
+
446
+ if self.use_visual_token_mask:
447
+ outputs = self.language_model.generate(
448
+ inputs_embeds=input_embeds,
449
+ attention_mask=attention_mask,
450
+ generation_config=generation_config,
451
+ output_hidden_states=output_hidden_states,
452
+ return_dict=return_dict,
453
+ use_cache=True,
454
+ visual_token_mask=visual_token_mask,
455
+ **generate_kwargs,
456
+ )
457
+ else:
458
+ outputs = self.language_model.generate(
459
+ inputs_embeds=input_embeds,
460
+ attention_mask=attention_mask,
461
+ generation_config=generation_config,
462
+ output_hidden_states=output_hidden_states,
463
+ return_dict=return_dict,
464
+ use_cache=True,
465
+ **generate_kwargs,
466
+ )
467
+
468
+ return outputs
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization Fast class for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, Optional, Tuple
21
+
22
+ from tokenizers import Tokenizer, decoders, normalizers, processors
23
+ from tokenizers.models import BPE
24
+ from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
25
+ SentencePieceExtractor,
26
+ SpmConverter)
27
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
28
+ from transformers.utils import logging
29
+
30
+ from .tokenization_internlm2 import InternLM2Tokenizer
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
35
+
36
+
37
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
38
+ class InternLM2Converter(SpmConverter):
39
+ handle_byte_fallback = True
40
+
41
+ def vocab(self, proto):
42
+ vocab = [
43
+ ('<unk>', 0.0),
44
+ ('<s>', 0.0),
45
+ ('</s>', 0.0),
46
+ ]
47
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
48
+ return vocab
49
+
50
+ def unk_id(self, proto):
51
+ unk_id = 0
52
+ return unk_id
53
+
54
+ def decoder(self, replacement, add_prefix_space):
55
+ return decoders.Sequence(
56
+ [
57
+ decoders.Replace('▁', ' '),
58
+ decoders.ByteFallback(),
59
+ decoders.Fuse(),
60
+ decoders.Strip(content=' ', left=1),
61
+ ]
62
+ )
63
+
64
+ def tokenizer(self, proto):
65
+ model_type = proto.trainer_spec.model_type
66
+ vocab_scores = self.vocab(proto)
67
+ # special tokens
68
+ added_tokens = self.original_tokenizer.added_tokens_decoder
69
+ for i in range(len(vocab_scores)):
70
+ piece, score = vocab_scores[i]
71
+ if i in added_tokens:
72
+ vocab_scores[i] = (added_tokens[i].content, score)
73
+ if model_type == 1:
74
+ raise RuntimeError('InternLM2 is supposed to be a BPE model!')
75
+
76
+ elif model_type == 2:
77
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
78
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
79
+ tokenizer = Tokenizer(
80
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
81
+ )
82
+ tokenizer.add_special_tokens(
83
+ [ added_token for index, added_token in added_tokens.items()]
84
+ )
85
+ else:
86
+ raise Exception(
87
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
88
+ )
89
+
90
+ return tokenizer
91
+
92
+ def normalizer(self, proto):
93
+ normalizers_list = []
94
+ if proto.normalizer_spec.add_dummy_prefix:
95
+ normalizers_list.append(normalizers.Prepend(prepend='▁'))
96
+ normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
97
+ return normalizers.Sequence(normalizers_list)
98
+
99
+ def pre_tokenizer(self, replacement, add_prefix_space):
100
+ return None
101
+
102
+
103
+ SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
104
+
105
+
106
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
107
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ slow_tokenizer_class = InternLM2Tokenizer
110
+ padding_side = 'left'
111
+ model_input_names = ['input_ids', 'attention_mask']
112
+ _auto_class = 'AutoTokenizer'
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_file,
117
+ unk_token='<unk>',
118
+ bos_token='<s>',
119
+ eos_token='</s>',
120
+ pad_token='</s>',
121
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
122
+ add_bos_token=True,
123
+ add_eos_token=False,
124
+ decode_with_prefix_space=False,
125
+ clean_up_tokenization_spaces=False,
126
+ **kwargs,
127
+ ):
128
+ super().__init__(
129
+ vocab_file=vocab_file,
130
+ unk_token=unk_token,
131
+ bos_token=bos_token,
132
+ eos_token=eos_token,
133
+ pad_token=pad_token,
134
+ sp_model_kwargs=sp_model_kwargs,
135
+ add_bos_token=add_bos_token,
136
+ add_eos_token=add_eos_token,
137
+ decode_with_prefix_space=decode_with_prefix_space,
138
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
139
+ **kwargs,
140
+ )
141
+ self._add_bos_token = add_bos_token
142
+ self._add_eos_token = add_eos_token
143
+ self.update_post_processor()
144
+ self.vocab_file = vocab_file
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ def update_post_processor(self):
151
+ """
152
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
153
+ """
154
+ bos = self.bos_token
155
+ bos_token_id = self.bos_token_id
156
+ if bos is None and self.add_bos_token:
157
+ raise ValueError('add_bos_token = True but bos_token = None')
158
+
159
+ eos = self.eos_token
160
+ eos_token_id = self.eos_token_id
161
+ if eos is None and self.add_eos_token:
162
+ raise ValueError('add_eos_token = True but eos_token = None')
163
+
164
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
165
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
166
+
167
+ special_tokens = []
168
+ if self.add_bos_token:
169
+ special_tokens.append((bos, bos_token_id))
170
+ if self.add_eos_token:
171
+ special_tokens.append((eos, eos_token_id))
172
+ self._tokenizer.post_processor = processors.TemplateProcessing(
173
+ single=single, pair=pair, special_tokens=special_tokens
174
+ )
175
+
176
+ @property
177
+ def add_eos_token(self):
178
+ return self._add_eos_token
179
+
180
+ @property
181
+ def add_bos_token(self):
182
+ return self._add_bos_token
183
+
184
+ @add_eos_token.setter
185
+ def add_eos_token(self, value):
186
+ self._add_eos_token = value
187
+ self.update_post_processor()
188
+
189
+ @add_bos_token.setter
190
+ def add_bos_token(self, value):
191
+ self._add_bos_token = value
192
+ self.update_post_processor()
193
+
194
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
195
+ if not self.can_save_slow_tokenizer:
196
+ raise ValueError(
197
+ 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
198
+ 'tokenizer.'
199
+ )
200
+
201
+ if not os.path.isdir(save_directory):
202
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
203
+ return
204
+ out_vocab_file = os.path.join(
205
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
206
+ )
207
+
208
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
209
+ copyfile(self.vocab_file, out_vocab_file)
210
+
211
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "model_max_length": 8192,
176
+ "pad_token": "</s>",
177
+ "tokenizer_class": "InternLM2Tokenizer",
178
+ "unk_token": "<unk>"
179
+ }