File size: 8,874 Bytes
c6c0583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb9591
 
 
c6c0583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternVL2_5-8B
  - OpenGVLab/InternVL2_5-8B-MPO
base_model_relation: finetune
datasets:
  - OpenGVLab/MMPR-v1.2
  - OpenGVLab/VisualPRM400K-v1.1
language:
  - multilingual
tags:
  - internvl
  - custom_code
---

# VisualPRM-8B-v1.1

[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL)
[\[📜 Paper\]](https://arxiv.org/abs/2503.10291)
[\[🆕 Blog\]](https://internvl.github.io/blog/2025-03-13-VisualPRM/)
[\[🤗 model\]](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1.1)
[\[🤗 dataset\]](https://huggingface.co/datasets/OpenGVLab/VisualPRM400K)
[\[🤗 benchmark\]](https://huggingface.co/datasets/OpenGVLab/VisualProcessBench)

***This is a newer version of [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B), which exhibits superior performance compared to [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B). Using VisualPRM-8B-v1.1 as the critic model, the reasoning abilities of InternVL3 are further enhanced.***

![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/reasoning.png)

## Introduction

We introduce VisualPRM, an advanced multimodal Process Reward Model (PRM) with 8B parameters, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs) across different model scales and families with Best-of-N (BoN) evaluation strategies. **Specifically, our model improves the reasoning performance of three types of MLLMs and four different model scales. Even when applied to the highly capable InternVL2.5-78B, it achieves a 5.9-point improvement across seven multimodal reasoning benchmarks.** Experimental results show that our model exhibits superior performance compared to Outcome Reward Models and Self-Consistency during BoN evaluation. To facilitate the training of multimodal PRMs, we construct a multimodal process supervision dataset VisualPRM400K using an automated data pipeline. For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels, to measure the abilities of PRMs to detect erroneous steps in multimodal reasoning tasks. We hope that our work can inspire more future research and contribute to the development of MLLMs.

![image/png](https://github.com/InternVL/InternVL.github.io/blob/main/blog/2025-03-13-VisualPRM/images/teaser.png?raw=true)

## Performance

![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/XVv8M4u-GOOJknrSnGWI4.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/DjMtYbrZo0J-LPVk_qiCt.png)


## Inference with Transformers

```python
import torch
import torchvision.transforms as T

from PIL import Image
from transformers import AutoModel, AutoTokenizer
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image, input_size=448, max_num=12):
    image = Image.open(image).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def main():
    path = 'OpenGVLab/VisualPRM-8B-v1.1'
    tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
    model = AutoModel.from_pretrained(
        path,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.bfloat16,
    ).eval().cuda()

    question = 'Find m \\angle 3.'

    response_a = """
To find the measure of \\angle 3, we need to use the properties of the angles in the given geometric figure.

1. \\angle EDC is a right angle, and it is split into \\angle EDF and \\angle 3.

2. We know that \\angle EDF = 39^\\circ because it is labeled in the diagram.

3. Since \\angle EDC is 90^\\circ, we can set up the equation for \\angle 3: \\angle EDC = \\angle EDF + \\angle 3

4. Substituting the known values, we get: 90^\\circ = 39^\\circ + \\angle 3

5. Solving for \\angle 3: \\angle 3 = 90^\\circ - 39^\\circ

6. Simplifying the equation: \\angle 3 = 51^\\circ

Final answer: 51^\\circ
""".strip()

    response_b = """
To find \\( m \\angle 3 \\), we need to analyze the given geometric figure carefully.

1. Recognize that \\( \\angle 3 \\) is part of triangle \\( BCE \\). Since \\( \\angle 1 \\) is given as 48° and \\( \\angle 2 \\) is a right angle (90°), we can use the properties of a right triangle to find \\( \\angle 3 \\).

2. The sum of the angles in any triangle is 180°. Therefore, in triangle \\( BCE \\): \[ \\angle 1 + \\angle 2 + \\angle 3 = 180° \]

3. Substitute the known values: \[ 48° + 90° + \\angle 3 = 180° \]

4. Solve for \\( \\angle 3 \\): \[ \\angle 3 = 180° - 48° - 90° = 42° \]

Thus, the measure of \\( \\angle 3 \\) is 42°.

Final answer: 42
""".strip()

    response_list = [
        response_a,
        response_b,
    ]
    image = 'examples/image.png'
    pixel_values = load_image(image).to(torch.bfloat16).cuda()

    sorted_response_list = model.select_best_response(
        tokenizer=tokenizer,
        question=question,
        response_list=response_list,
        pixel_values=pixel_values,
        return_scores=True,
    )

    print('Best response:', sorted_response_list[0][0])
    print('Highest score:', sorted_response_list[0][1])

if __name__ == '__main__':
    main()
```

## License

This project is released under the MIT License. This project uses the pre-trained internlm2_5-7b-chat as a component, which is licensed under the Apache License 2.0.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{wang2025visualprm,
  title={VisualPRM: An Effective Process Reward Model for Multimodal Reasoning},
  author={Wang, Weiyun and Gao, Zhangwei and Chen, Lianjie and Chen, Zhe and Zhu, Jinguo and Zhao, Xiangyu and Liu, Yangzhou and Cao, Yue and Ye, Shenglong and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2503.10291},
  year={2025}
}
```