File size: 1,605 Bytes
27b0e5e
dbdc861
 
27b0e5e
 
 
 
dbdc861
 
27b0e5e
 
 
d7caaa4
 
 
 
dbdc861
 
d7caaa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b1907
d7caaa4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
base_model:
- ByteDance-Seed/UI-TARS-7B-DPO
language:
- en
- zh
library_name: transformers
license: apache-2.0
pipeline_tag: robotics
tags:
- multimodal
- gui
---

# ZeroGUI-AndroidLab-7B

[\\[๐Ÿ“œ Paper\\]](https://arxiv.org/abs/2505.23762)
[\\[๐Ÿ“‚ GitHub\\]](https://github.com/OpenGVLab/ZeroGUI)

## Introduction

We propose **ZeroGUI**, a fully automated online reinforcement learning framework that enables GUI agents to train and adapt in interactive environments at zero human cost.

* **Automatic Task Generation:** Automatically proposes diverse, executable GUI tasks.

* **Automatic Reward Estimation:** Assigns binary task rewards based on trajectory screenshots and employs a voting mechanism to avoid hallucinated success.

* **Two-Stage Online RL:** Combines training on generated tasks and test-time adaptation to continually improve agent's performance.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637f347a52229c639211bee8/1vrET2pXAV8quJIqme0z3.png)

## Results

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637f347a52229c639211bee8/FLbNDzy6aC9XV-VGAWYVA.png)

## Citation

If you find this work helpful in your research, please consider citing:

```bibtex
@article{yang2025zerogui,
  title={ZeroGUI: Automating Online GUI Learning at Zero Human Cost},
  author={Yang, Chenyu and Shiqian, Su and Liu, Shi and Dong, Xuan and Yu, Yue and Su, Weijie and Wang, Xuehui and Liu, Zhaoyang and Zhu, Jinguo and Li, Hao and Wang, Wenhai and Qiao, Yu and Zhu, Xizhou and Dai, Jifeng},
  journal={arXiv preprint arXiv:2505.23762},
  year={2025}
}
```