File size: 5,793 Bytes
5cfc139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch, transformers
from typing import Any, Dict
from transformers import AutoTokenizer, AutoModelForCausalLM
import re
import unicodedata


class EndpointHandler:
    def __init__(self, path):
        tokenizer = AutoTokenizer.from_pretrained(path)
        model = AutoModelForCausalLM.from_pretrained(
            path, device_map="auto", torch_dtype=torch.bfloat16, load_in_4bit=True
        )
        self.pipeline = transformers.pipeline(
            "text-generation", model=model, tokenizer=tokenizer
        )

    def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
        # process input
        inputs = data.pop("inputs", data)

        # default parameters
        parameters = {
            "max_new_tokens": 128,
            "do_sample": True,
            "top_k": 10,
            "temperature": 1.0,
            "return_full_text": False,
        }

        # user parameters
        parameters.update(data.pop("parameters", {}))

        unique = isinstance(inputs, str)
        inputs, denormalize_funcs = claire_text_preproc_conversation(inputs)

        sequences = self.pipeline(inputs, **parameters)

        if unique:
            return [{"generated_text": denormalize_funcs(sequences[0]["generated_text"])}]
        else:
            assert len(denormalize_funcs) == len(sequences)
            return [{"generated_text": denormalize_func(seq[0]["generated_text"])} for denormalize_func, seq in zip(denormalize_funcs, sequences)]


def claire_text_preproc_conversation(text):
    if isinstance(text, (list, tuple)):
        assert len(text)
        # Apply and transpose
        texts, denormalize_funcs = zip(*[claire_text_preproc_conversation(t) for t in text])
        return list(texts), list(denormalize_funcs)

    if not isinstance(text, str):
        return text

    text = format_special_characters(text)

    text = re.sub(" - | -$|^- ", " ", text.strip(" "))

    global _reverse_tag_transfo
    _reverse_tag_transfo = {}
    text = format_special_tags(text)

    text = collapse_whitespaces_conversations(text)

    if _reverse_tag_transfo:
        reverse_tag_transfo = _reverse_tag_transfo.copy()
        def denormalize_func(t):
            for k, v in reverse_tag_transfo.items():
                if k in t:
                    t = t.replace(k, v)
            return t

        return text, lambda x: denormalize_func(x)

    else:
        return text, lambda x: x


_brackets = re.compile(r"\[([^\]]*)\]")
_pattern_speaker = re.compile(r"[^\]]+:")

# Global variable to remember some normalizations that were done and apply it back
_reverse_tag_transfo = {}
_anonymized_prefix = None


def format_special_tags(text):
    global _reverse_tag_transfo, _anonymized_prefix
    _anonymized_prefix = None
    text = re.sub(_brackets, _format_special_tags, text)
    # At last the generic anonymization
    if _anonymized_prefix:
        _reverse_tag_transfo["[Intervenant "] = _anonymized_prefix
    return text


def _format_special_tags(match):
    content_within_brackets = match.group(1)
    if re.match(_pattern_speaker, content_within_brackets):
        return _format_tag(match.group())
    else:
        return ""

def _format_tag(text):
    global _reverse_tag_transfo, _anonymized_prefix
    if text.endswith(":]"):
        anonymized_spk_prefixes = ["speaker", "spk", "locuteur"]
        # Conversion "[speaker001:]" -> "[Intervenant 1:]"
        for prefix in anonymized_spk_prefixes:
            if text.lower().startswith("["+prefix):
                try:
                    index = int(text[len(prefix)+1:-2])
                except ValueError:
                    return text
                new_spk_tag = f"[Intervenant {index}:]"
                _reverse_tag_transfo[new_spk_tag] = text
                if _anonymized_prefix is None:
                    prefix = "["+prefix
                    while len(prefix) < len(text) and text[len(prefix)] in " 0":
                        prefix += text[len(prefix)]
                    _anonymized_prefix = prefix
                return "\n" + new_spk_tag

        # Capitalize speaker name
        speaker = text[1:-2]
        speaker = capitalize(speaker)
        new_spk_tag = f"[{speaker}:]"
        if text != new_spk_tag:
            _reverse_tag_transfo[new_spk_tag] = text
        return "\n" + new_spk_tag

    # if text == "[PII]":
    #     return "[Nom]"
    # if text == "[NOISE]":
    #     return "[bruit]"
    # if text == "[LAUGHTER]":
    #     return "[rire]"
    
    return ""


def capitalize(text):
    # Custom capitalization for first and last names
    words = text.split(" ")
    words = [w.capitalize() if (not w.isupper() or len(w) > 2) else w for w in words]
    for i, w in enumerate(words):
        for sep in "-", "'":
            if sep in w:
                words[i] = sep.join(
                    [x.capitalize() if not x.isupper() else x for x in w.split(sep)]
                )
    return " ".join(words)


def collapse_whitespaces_conversations(text):
    text = re.sub(r"\n+", "\n", text)
    text = re.sub(r"[ \t]+", " ", text)
    text = re.sub(r"\n ", "\n", text)
    text = re.sub(r" ([\.,])", r"\1", text)
    return text.lstrip().rstrip(" ")


def format_special_characters(text):
    text = unicodedata.normalize("NFC", text)
    for before, after in [
        ("…", "..."),
        (r"[«“][^\S\r\n]*", '"'),
        (r"[^\S\r\n]*[»”″„]", '"'),
        (r"(``|'')", '"'),
        (r"[’‘‛ʿ]", "'"),
        ("‚", ","),
        (r"–", "-"),
        ("[  ]", " "),  # unbreakable spaces
        (r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", ""),  # non-printable characters
        # ("·", "."),
        (r"ᵉʳ", "er"),
        (r"ᵉ", "e"),
    ]:
        text = re.sub(before, after, text)

    return text