Safetensors
Romanian
llama
Eval Results
mihaimasala commited on
Commit
b2c30f5
1 Parent(s): 6ac504e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +747 -3
README.md CHANGED
@@ -1,3 +1,747 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ model-index:
10
+ - name: OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: RoMT-Bench
16
+ type: RoMT-Bench
17
+ metrics:
18
+ - name: Score
19
+ type: Score
20
+ value: 5.87
21
+ - task:
22
+ type: text-generation
23
+ dataset:
24
+ name: RoCulturaBench
25
+ type: RoCulturaBench
26
+ metrics:
27
+ - name: Score
28
+ type: Score
29
+ value: 4.4
30
+ - task:
31
+ type: text-generation
32
+ dataset:
33
+ name: Romanian_Academic_Benchmarks
34
+ type: Romanian_Academic_Benchmarks
35
+ metrics:
36
+ - name: Average accuracy
37
+ type: accuracy
38
+ value: 49.96
39
+ - task:
40
+ type: text-generation
41
+ dataset:
42
+ name: OpenLLM-Ro/ro_arc_challenge
43
+ type: OpenLLM-Ro/ro_arc_challenge
44
+ metrics:
45
+ - name: Average accuracy
46
+ type: accuracy
47
+ value: 46.29
48
+ - task:
49
+ type: text-generation
50
+ dataset:
51
+ name: OpenLLM-Ro/ro_mmlu
52
+ type: OpenLLM-Ro/ro_mmlu
53
+ metrics:
54
+ - name: Average accuracy
55
+ type: accuracy
56
+ value: 53.29
57
+ - task:
58
+ type: text-generation
59
+ dataset:
60
+ name: OpenLLM-Ro/ro_winogrande
61
+ type: OpenLLM-Ro/ro_winogrande
62
+ metrics:
63
+ - name: Average accuracy
64
+ type: accuracy
65
+ value: 65.57
66
+ - task:
67
+ type: text-generation
68
+ dataset:
69
+ name: OpenLLM-Ro/ro_hellaswag
70
+ type: OpenLLM-Ro/ro_hellaswag
71
+ metrics:
72
+ - name: Average accuracy
73
+ type: accuracy
74
+ value: 58.15
75
+ - task:
76
+ type: text-generation
77
+ dataset:
78
+ name: OpenLLM-Ro/ro_gsm8k
79
+ type: OpenLLM-Ro/ro_gsm8k
80
+ metrics:
81
+ - name: Average accuracy
82
+ type: accuracy
83
+ value: 34.77
84
+ - task:
85
+ type: text-generation
86
+ dataset:
87
+ name: OpenLLM-Ro/ro_truthfulqa
88
+ type: OpenLLM-Ro/ro_truthfulqa
89
+ metrics:
90
+ - name: Average accuracy
91
+ type: accuracy
92
+ value: 41.7
93
+ - task:
94
+ type: text-generation
95
+ dataset:
96
+ name: LaRoSeDa_binary
97
+ type: LaRoSeDa_binary
98
+ metrics:
99
+ - name: Average macro-f1
100
+ type: macro-f1
101
+ value: 0
102
+ - task:
103
+ type: text-generation
104
+ dataset:
105
+ name: LaRoSeDa_multiclass
106
+ type: LaRoSeDa_multiclass
107
+ metrics:
108
+ - name: Average macro-f1
109
+ type: macro-f1
110
+ value: 0
111
+ - task:
112
+ type: text-generation
113
+ dataset:
114
+ name: LaRoSeDa_binary_finetuned
115
+ type: LaRoSeDa_binary_finetuned
116
+ metrics:
117
+ - name: Average macro-f1
118
+ type: macro-f1
119
+ value: 0
120
+ - task:
121
+ type: text-generation
122
+ dataset:
123
+ name: LaRoSeDa_multiclass_finetuned
124
+ type: LaRoSeDa_multiclass_finetuned
125
+ metrics:
126
+ - name: Average macro-f1
127
+ type: macro-f1
128
+ value: 0
129
+ - task:
130
+ type: text-generation
131
+ dataset:
132
+ name: WMT_EN-RO
133
+ type: WMT_EN-RO
134
+ metrics:
135
+ - name: Average bleu
136
+ type: bleu
137
+ value: 0
138
+ - task:
139
+ type: text-generation
140
+ dataset:
141
+ name: WMT_RO-EN
142
+ type: WMT_RO-EN
143
+ metrics:
144
+ - name: Average bleu
145
+ type: bleu
146
+ value: 0
147
+ - task:
148
+ type: text-generation
149
+ dataset:
150
+ name: WMT_EN-RO_finetuned
151
+ type: WMT_EN-RO_finetuned
152
+ metrics:
153
+ - name: Average bleu
154
+ type: bleu
155
+ value: 0
156
+ - task:
157
+ type: text-generation
158
+ dataset:
159
+ name: WMT_RO-EN_finetuned
160
+ type: WMT_RO-EN_finetuned
161
+ metrics:
162
+ - name: Average bleu
163
+ type: bleu
164
+ value: 0
165
+ - task:
166
+ type: text-generation
167
+ dataset:
168
+ name: XQuAD
169
+ type: XQuAD
170
+ metrics:
171
+ - name: Average exact_match
172
+ type: exact_match
173
+ value: 0
174
+ - task:
175
+ type: text-generation
176
+ dataset:
177
+ name: XQuAD
178
+ type: XQuAD
179
+ metrics:
180
+ - name: Average f1
181
+ type: f1
182
+ value: 0
183
+ - task:
184
+ type: text-generation
185
+ dataset:
186
+ name: XQuAD_finetuned
187
+ type: XQuAD_finetuned
188
+ metrics:
189
+ - name: Average exact_match
190
+ type: exact_match
191
+ value: 0
192
+ - task:
193
+ type: text-generation
194
+ dataset:
195
+ name: XQuAD_finetuned
196
+ type: XQuAD_finetuned
197
+ metrics:
198
+ - name: Average f1
199
+ type: f1
200
+ value: 0
201
+ - task:
202
+ type: text-generation
203
+ dataset:
204
+ name: STS
205
+ type: STS
206
+ metrics:
207
+ - name: Average spearman
208
+ type: spearman
209
+ value: 0
210
+ - task:
211
+ type: text-generation
212
+ dataset:
213
+ name: STS
214
+ type: STS
215
+ metrics:
216
+ - name: Average pearson
217
+ type: pearson
218
+ value: 0
219
+ - task:
220
+ type: text-generation
221
+ dataset:
222
+ name: STS_finetuned
223
+ type: STS_finetuned
224
+ metrics:
225
+ - name: Average spearman
226
+ type: spearman
227
+ value: 0
228
+ - task:
229
+ type: text-generation
230
+ dataset:
231
+ name: STS_finetuned
232
+ type: STS_finetuned
233
+ metrics:
234
+ - name: Average pearson
235
+ type: pearson
236
+ value: 0
237
+ - task:
238
+ type: text-generation
239
+ dataset:
240
+ name: RoMT-Bench
241
+ type: RoMT-Bench
242
+ metrics:
243
+ - name: First turn
244
+ type: Score
245
+ value: 6.22
246
+ - name: Second turn
247
+ type: Score
248
+ value: 5.49
249
+ - task:
250
+ type: text-generation
251
+ dataset:
252
+ name: OpenLLM-Ro/ro_arc_challenge
253
+ type: OpenLLM-Ro/ro_arc_challenge
254
+ metrics:
255
+ - name: 0-shot
256
+ type: accuracy
257
+ value: 44.56
258
+ - name: 1-shot
259
+ type: accuracy
260
+ value: 45.42
261
+ - name: 3-shot
262
+ type: accuracy
263
+ value: 46.1
264
+ - name: 5-shot
265
+ type: accuracy
266
+ value: 46.27
267
+ - name: 10-shot
268
+ type: accuracy
269
+ value: 46.96
270
+ - name: 25-shot
271
+ type: accuracy
272
+ value: 48.41
273
+ - task:
274
+ type: text-generation
275
+ dataset:
276
+ name: OpenLLM-Ro/ro_mmlu
277
+ type: OpenLLM-Ro/ro_mmlu
278
+ metrics:
279
+ - name: 0-shot
280
+ type: accuracy
281
+ value: 52.33
282
+ - name: 1-shot
283
+ type: accuracy
284
+ value: 52.86
285
+ - name: 3-shot
286
+ type: accuracy
287
+ value: 54.06
288
+ - name: 5-shot
289
+ type: accuracy
290
+ value: 53.9
291
+ - task:
292
+ type: text-generation
293
+ dataset:
294
+ name: OpenLLM-Ro/ro_winogrande
295
+ type: OpenLLM-Ro/ro_winogrande
296
+ metrics:
297
+ - name: 0-shot
298
+ type: accuracy
299
+ value: 64.33
300
+ - name: 1-shot
301
+ type: accuracy
302
+ value: 64.72
303
+ - name: 3-shot
304
+ type: accuracy
305
+ value: 66.3
306
+ - name: 5-shot
307
+ type: accuracy
308
+ value: 66.93
309
+ - task:
310
+ type: text-generation
311
+ dataset:
312
+ name: OpenLLM-Ro/ro_hellaswag
313
+ type: OpenLLM-Ro/ro_hellaswag
314
+ metrics:
315
+ - name: 0-shot
316
+ type: accuracy
317
+ value: 57.45
318
+ - name: 1-shot
319
+ type: accuracy
320
+ value: 57.65
321
+ - name: 3-shot
322
+ type: accuracy
323
+ value: 58.18
324
+ - name: 5-shot
325
+ type: accuracy
326
+ value: 58.64
327
+ - name: 10-shot
328
+ type: accuracy
329
+ value: 58.85
330
+ - task:
331
+ type: text-generation
332
+ dataset:
333
+ name: OpenLLM-Ro/ro_gsm8k
334
+ type: OpenLLM-Ro/ro_gsm8k
335
+ metrics:
336
+ - name: 0-shot
337
+ type: accuracy
338
+ value: 32.52
339
+ - name: 1-shot
340
+ type: accuracy
341
+ value: 33.97
342
+ - name: 3-shot
343
+ type: accuracy
344
+ value: 37.83
345
+ - task:
346
+ type: text-generation
347
+ dataset:
348
+ name: LaRoSeDa_binary
349
+ type: LaRoSeDa_binary
350
+ metrics:
351
+ - name: 0-shot
352
+ type: macro-f1
353
+ value: 0
354
+ - name: 1-shot
355
+ type: macro-f1
356
+ value: 0
357
+ - name: 3-shot
358
+ type: macro-f1
359
+ value: 0
360
+ - name: 5-shot
361
+ type: macro-f1
362
+ value: 0
363
+ - task:
364
+ type: text-generation
365
+ dataset:
366
+ name: LaRoSeDa_multiclass
367
+ type: LaRoSeDa_multiclass
368
+ metrics:
369
+ - name: 0-shot
370
+ type: macro-f1
371
+ value: 0
372
+ - name: 1-shot
373
+ type: macro-f1
374
+ value: 0
375
+ - name: 3-shot
376
+ type: macro-f1
377
+ value: 0
378
+ - name: 5-shot
379
+ type: macro-f1
380
+ value: 0
381
+ - task:
382
+ type: text-generation
383
+ dataset:
384
+ name: WMT_EN-RO
385
+ type: WMT_EN-RO
386
+ metrics:
387
+ - name: 0-shot
388
+ type: bleu
389
+ value: 0
390
+ - name: 1-shot
391
+ type: bleu
392
+ value: 0
393
+ - name: 3-shot
394
+ type: bleu
395
+ value: 0
396
+ - name: 5-shot
397
+ type: bleu
398
+ value: 0
399
+ - task:
400
+ type: text-generation
401
+ dataset:
402
+ name: WMT_RO-EN
403
+ type: WMT_RO-EN
404
+ metrics:
405
+ - name: 0-shot
406
+ type: bleu
407
+ value: 0
408
+ - name: 1-shot
409
+ type: bleu
410
+ value: 0
411
+ - name: 3-shot
412
+ type: bleu
413
+ value: 0
414
+ - name: 5-shot
415
+ type: bleu
416
+ value: 0
417
+ - task:
418
+ type: text-generation
419
+ dataset:
420
+ name: XQuAD_EM
421
+ type: XQuAD_EM
422
+ metrics:
423
+ - name: 0-shot
424
+ type: exact_match
425
+ value: 0
426
+ - name: 1-shot
427
+ type: exact_match
428
+ value: 0
429
+ - name: 3-shot
430
+ type: exact_match
431
+ value: 0
432
+ - name: 5-shot
433
+ type: exact_match
434
+ value: 0
435
+ - task:
436
+ type: text-generation
437
+ dataset:
438
+ name: XQuAD_F1
439
+ type: XQuAD_F1
440
+ metrics:
441
+ - name: 0-shot
442
+ type: f1
443
+ value: 0
444
+ - name: 1-shot
445
+ type: f1
446
+ value: 0
447
+ - name: 3-shot
448
+ type: f1
449
+ value: 0
450
+ - name: 5-shot
451
+ type: f1
452
+ value: 0
453
+ - task:
454
+ type: text-generation
455
+ dataset:
456
+ name: STS
457
+ type: STS
458
+ metrics:
459
+ - name: 0-shot
460
+ type: spearman
461
+ value: 0
462
+ - name: 1-shot
463
+ type: spearman
464
+ value: 0
465
+ - name: 3-shot
466
+ type: spearman
467
+ value: 0
468
+ - task:
469
+ type: text-generation
470
+ dataset:
471
+ name: STS
472
+ type: STS
473
+ metrics:
474
+ - name: 0-shot
475
+ type: pearson
476
+ value: 0
477
+ - name: 1-shot
478
+ type: pearson
479
+ value: 0
480
+ - name: 3-shot
481
+ type: pearson
482
+ value: 0
483
+ ---
484
+
485
+ # Model Card for Model ID
486
+
487
+ *Built with Meta Llama 3*
488
+
489
+ This model points/is identical to [RoLlama3-8b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09)
490
+
491
+
492
+ <!-- Provide a quick summary of what the model is/does. -->
493
+
494
+ RoLlama3 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page.
495
+
496
+
497
+ ## Model Details
498
+
499
+ ### Model Description
500
+
501
+ <!-- Provide a longer summary of what this model is. -->
502
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
503
+
504
+
505
+ - **Developed by:** OpenLLM-Ro
506
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
507
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
508
+ <!-- - **Model type:** [More Information Needed] -->
509
+ - **Language(s):** Romanian
510
+ - **License:** cc-by-nc-4.0
511
+ - **Finetuned from model:** [RoLlama3-8b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09)
512
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
513
+
514
+
515
+ ### Model Sources
516
+
517
+ <!-- Provide the basic links for the model. -->
518
+
519
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
520
+ - **Paper:** https://arxiv.org/abs/2406.18266
521
+
522
+ ## Intended Use
523
+
524
+ ### Intended Use Cases
525
+
526
+ RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
527
+
528
+ ### Out-of-Scope Use
529
+
530
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
531
+
532
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
533
+
534
+
535
+
536
+ ## How to Get Started with the Model
537
+
538
+ Use the code below to get started with the model.
539
+
540
+ ```python
541
+ from transformers import AutoTokenizer, AutoModelForCausalLM
542
+
543
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")
544
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09")
545
+
546
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
547
+ chat = [
548
+ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
549
+ {"role": "user", "content": instruction},
550
+ ]
551
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
552
+
553
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
554
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
555
+ print(tokenizer.decode(outputs[0]))
556
+ ```
557
+
558
+ ## Academic Benchmarks
559
+
560
+ <table>
561
+ <tbody>
562
+ <tr>
563
+ <td><strong>Model</strong></td>
564
+ <td><strong><center>Average</center></strong></td>
565
+ <td><strong><center>ARC</center></strong></td>
566
+ <td><strong><center>MMLU</center></strong></td>
567
+ <td><strong><center>Winogrande</center></strong></td>
568
+ <td><strong><center>Hellaswag</center></strong></td>
569
+ <td><strong><center>GSM8k</center></strong></td>
570
+ <td><strong><center>TruthfulQA</center></strong></td>
571
+ </tr>
572
+ <tr>
573
+ <td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td>
574
+ </tr>
575
+ <tr>
576
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td>
577
+ </tr>
578
+ <tr>
579
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center><strong>52.21</strong></center></td><td><center><strong>47.94</strong></center></td><td><center><strong>53.50</strong></center></td><td><center>66.06</center></td><td><center><strong>59.72</strong></center></td><td><center>40.16</center></td><td><center>45.90</center></td>
580
+ </tr>
581
+ <tr>
582
+ <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>49.96</em></center></td><td><center><em>46.29</em></center></td><td><center><em>53.29</em></center></td><td><center><em>65.57</em></center></td><td><center><em>58.15</em></center></td><td><center><em>34.77</em></center></td><td><center><em>41.70</em></center></td>
583
+ </tr>
584
+ </tbody>
585
+ </table>
586
+
587
+ ## Downstream tasks
588
+
589
+ <table>
590
+ <tbody>
591
+ <tr>
592
+ <td></td>
593
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
594
+ <td colspan="4"><center><strong>WMT</strong></center></td>
595
+ </tr>
596
+ <tr>
597
+ <td></td>
598
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
599
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
600
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
601
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
602
+ </tr>
603
+ <tr>
604
+ <td><strong>Model</strong></td>
605
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
606
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
607
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
608
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
609
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
610
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
611
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
612
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
613
+ </tr>
614
+ <tr>
615
+ <td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td>
616
+ </tr>
617
+ <tr>
618
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td>
619
+ </tr>
620
+ <tr>
621
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>95.58</center></td><td><center>61.20</center></td><td><center>96.46</center></td><td><center><strong>87.26</strong></center></td><td><center>22.92</center></td><td><center>24.28</center></td><td><center>27.31</center></td><td><center><strong>40.52</strong></center></td>
622
+ </tr>
623
+ <tr>
624
+ <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
625
+ </tr>
626
+ </tbody>
627
+ </table>
628
+
629
+
630
+ <table>
631
+ <tbody>
632
+ <tr>
633
+ <td></td>
634
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
635
+ <td colspan="4"><center><strong>STS</strong></center></td>
636
+ </tr>
637
+ <tr>
638
+ <td></td>
639
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
640
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
641
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
642
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
643
+ </tr>
644
+ <tr>
645
+ <td><strong>Model</strong></td>
646
+ <td><center><strong>(EM)</strong></center></td>
647
+ <td><center><strong>(F1)</strong></center></td>
648
+ <td><center><strong>(EM)</strong></center></td>
649
+ <td><center><strong>(F1)</strong></center></td>
650
+ <td><center><strong>(Spearman)</strong></center></td>
651
+ <td><center><strong>(Pearson)</strong></center></td>
652
+ <td><center><strong>(Spearman)</strong></center></td>
653
+ <td><center><strong>(Pearson)</strong></center></td>
654
+ </tr>
655
+ <tr>
656
+ <td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td>
657
+ </tr>
658
+ <tr>
659
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center><strong>77.87</strong></center></td><td><center>85.80</center></td><td><center>86.05</center></td>
660
+ </tr>
661
+ <tr>
662
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>18.89</center></td><td><center>31.79</center></td><td><center>50.84</center></td><td><center>65.18</center></td><td><center><strong>77.60</strong></center></td><td><center>76.86</center></td><td><center><strong>86.70</strong></center></td><td><center><strong>87.09</strong></center></td>
663
+ </tr>
664
+ <tr>
665
+ <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
666
+ </tr>
667
+ </tbody>
668
+ </table>
669
+
670
+
671
+ ## MT-Bench
672
+
673
+ <table>
674
+ <tbody>
675
+ <tr>
676
+ <td><strong>Model</strong></td>
677
+ <td><strong><center>Average</center></strong></td>
678
+ <td><strong><center>1st turn</center></strong></td>
679
+ <td><strong><center>2nd turn</center></strong></td>
680
+ <td><strong><center>Answers in Ro</center></strong></td>
681
+ </tr>
682
+ <tr>
683
+ <td>Llama-3-8B-Instruct</td><td><center><strong>5.96</strong></center></td><td><center>6.16</center></td><td><center><strong>5.76</strong></center></td><td><center>158/160</center></td>
684
+ </tr>
685
+ <tr>
686
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>5.15</center></td><td><center>6.03</center></td><td><center>4.28</center></td><td><center><strong>160/160</strong></center></td>
687
+ </tr>
688
+ <tr>
689
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>5.38</center></td><td><center>6.09</center></td><td><center>4.67</center></td><td><center><strong>160/160</strong></center></td>
690
+ </tr>
691
+ <tr>
692
+ <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>5.87</em></center></td><td><center><em><strong>6.22</strong></em></center></td><td><center><em>5.49</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
693
+ </tr>
694
+ </tbody>
695
+ </table>
696
+
697
+ ## RoCulturaBench
698
+
699
+ <table>
700
+ <tbody>
701
+ <tr>
702
+ <td><strong>Model</strong></td>
703
+ <td><strong><center>Average</center></strong></td>
704
+ <td><strong><center>Answers in Ro</center></strong></td>
705
+ </tr>
706
+ <tr>
707
+ <td>Llama-3-8B-Instruct</td><td><center><strong>4.62</strong></center></td><td><center><strong>100/100</strong></center></td>
708
+ </tr>
709
+ <tr>
710
+ <td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>3.71</center></td><td><center><strong>100/100</strong></center></td>
711
+ </tr>
712
+ <tr>
713
+ <td>RoLlama3-8b-Instruct-2024-10-09</td><td><center>3.81</center></td><td><center><strong>100/100</strong></center></td>
714
+ </tr>
715
+ <tr>
716
+ <td><em>RoLlama3-8b-Instruct-DPO-2024-10-09</em></td><td><center><em>4.40</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
717
+ </tr>
718
+ </tbody>
719
+ </table>
720
+
721
+
722
+
723
+ ## RoLlama3 Model Family
724
+
725
+ | Model | Link |
726
+ |--------------------|:--------:|
727
+ |RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) |
728
+ |RoLlama3-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) |
729
+ |*RoLlama3-8b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) |
730
+
731
+
732
+ ## Citation
733
+
734
+ ```
735
+ @misc{masala2024vorbecstiromanecsterecipetrain,
736
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
737
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
738
+ year={2024},
739
+ eprint={2406.18266},
740
+ archivePrefix={arXiv},
741
+ primaryClass={cs.CL},
742
+ url={https://arxiv.org/abs/2406.18266},
743
+ }
744
+ ```
745
+ <!-- **APA:**
746
+
747
+ [More Information Needed] -->