|
from PIL import Image |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
import torchvision.transforms.functional as F |
|
|
|
from .ixc_utils import HD_transform |
|
|
|
class Resize_with_pad: |
|
def __init__(self, w=490, h=490): |
|
self.w = w |
|
self.h = h |
|
|
|
def __call__(self, image): |
|
w_1, h_1 = image.size |
|
ratio_f = self.w / self.h |
|
ratio_1 = w_1 / h_1 |
|
|
|
if round(ratio_1, 2) != round(ratio_f, 2): |
|
|
|
|
|
hp = int(w_1/ratio_f - h_1) |
|
wp = int(ratio_f * h_1 - w_1) |
|
if hp > 0 and wp < 0: |
|
hp = hp // 2 |
|
image = F.pad(image, (0, hp, 0, hp), 0, "constant") |
|
return F.resize(image, [self.h, self.w], interpolation=InterpolationMode.BICUBIC) |
|
|
|
elif hp < 0 and wp > 0: |
|
wp = wp // 2 |
|
image = F.pad(image, (wp, 0, wp, 0), 0, "constant") |
|
return F.resize(image, [self.h, self.w], interpolation=InterpolationMode.BICUBIC) |
|
|
|
else: |
|
return F.resize(image, [self.h, self.w], interpolation=InterpolationMode.BICUBIC) |
|
|
|
class ImageProcessor: |
|
|
|
def __init__(self, image_size=224): |
|
self.resizepad = Resize_with_pad(image_size, image_size) |
|
mean = (0.48145466, 0.4578275, 0.40821073) |
|
std = (0.26862954, 0.26130258, 0.27577711) |
|
self.normalize = transforms.Normalize(mean, std) |
|
|
|
self.transform = transforms.Compose([ |
|
|
|
|
|
transforms.ToTensor(), |
|
self.normalize, |
|
]) |
|
|
|
def __call__(self, itemname): |
|
try: |
|
if isinstance(itemname, Image.Image): |
|
item = itemname.convert('RGB') |
|
else: |
|
item = Image.open(itemname).convert('RGB') |
|
item = self.resizepad(item) |
|
except Exception as e: |
|
print(e, flush=True) |
|
print('error img', itemname, flush=True) |
|
exit() |
|
return self.transform(item) |
|
|
|
class ImageProcessorHD: |
|
|
|
def __init__(self, image_size=224, hd_num=-1): |
|
mean = (0.48145466, 0.4578275, 0.40821073) |
|
std = (0.26862954, 0.26130258, 0.27577711) |
|
self.normalize = transforms.Normalize(mean, std) |
|
self.hd_num = hd_num |
|
|
|
self.transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
self.normalize, |
|
]) |
|
|
|
def __call__(self, item): |
|
item = Image.open(item).convert('RGB') |
|
return self.transform(HD_transform(item, hd_num=self.hd_num)) |
|
|
|
|
|
def get_internlm_processor(): |
|
return ImageProcessor(image_size=490) |
|
|
|
|
|
processor_dict = { |
|
'Internlm': get_internlm_processor, |
|
} |
|
|
|
def get_image_processor(model_name): |
|
return processor_dict[model_name]() |