import os import torch import transformers from transformers import deepspeed from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus from .arguments import TrainingArguments, DataArguments, LoraArguments from transformers.modeling_utils import _load_state_dict_into_model from model import get_model def maybe_zero_3(param): if hasattr(param, 'ds_id'): assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == 'none': to_return = {k: t for k, t in named_params if 'lora_' in k} elif bias == 'all': to_return = { k: t for k, t in named_params if 'lora_' in k or 'bias' in k } elif bias == 'lora_only': to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if 'lora_' in k: to_return[k] = t bias_name = k.split('lora_')[0] + 'bias' lora_bias_names.add(bias_name) elif 'bias' in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v).cpu() for k, v in to_return.items()} return to_return def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias='none'): """Collects the state dict and dump to disk.""" # check if zero3 mode enabled if deepspeed.is_deepspeed_zero3_enabled(): state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() else: if trainer.args.use_lora: state_dict = get_peft_state_maybe_zero_3( trainer.model.named_parameters(), bias) else: state_dict = trainer.model.state_dict() if trainer.args.should_save and trainer.args.local_rank == 0: trainer._save(output_dir, state_dict=state_dict) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(trainer.model.named_parameters()) torch.save(non_lora_state_dict, os.path.join(output_dir, 'non_lora_trainables.bin')) def init_model(model_path, training_args: TrainingArguments, data_args: DataArguments, lora_args: LoraArguments, model_cfg: dict): model = get_model( model_name = model_cfg['model_name'], model_path = model_path, training_args = training_args, data_args = data_args, lora_args = lora_args, use_caption = model_cfg.get('use_caption', None), ) if model_cfg['model_name'] == 'Idefics2': model, tokenizer = model.get_model_processor() else: model, tokenizer = model.get_model_tokenizer() if training_args.use_lora and lora_args.lora_weight_path != '': if lora_args.lora_type == 'lora': try: delta_path = os.path.join(lora_args.lora_weight_path, 'adapter_model.bin') delta_ckpt = torch.load(delta_path, 'cpu') except: from safetensors.torch import load_file delta_path = os.path.join(lora_args.lora_weight_path, 'adapter_model.safetensors') delta_ckpt = load_file(delta_path, 'cpu') new_dict = {} for key, value in delta_ckpt.items(): new_dict[f'{key[:-7]}.default.weight'] = value _load_state_dict_into_model(model, new_dict, start_prefix='') print(f'load delta ckpt from {os.path.abspath(delta_path)}') non_lora_ckpt_path = os.path.join(lora_args.lora_weight_path, 'non_lora_trainables.bin') if os.path.exists(non_lora_ckpt_path): non_lora_trainables = torch.load(non_lora_ckpt_path, map_location='cpu') _load_state_dict_into_model(model, non_lora_trainables, start_prefix='') print(f'load non lora ckpt from {os.path.abspath(non_lora_ckpt_path)}') else: raise NotImplementedError return model, tokenizer