File size: 11,310 Bytes
42899a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
from typing import List, Optional, TypeAlias, Union

import torch
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
from transformers import AutoModelForImageTextToText, AutoProcessor

ImageInput: TypeAlias = Union[Image.Image, List[Image.Image]]
BatchImageInput: TypeAlias = Union[List[Image.Image], List[List[Image.Image]]]


class OpsMMEmbeddingV1(nn.Module):
    def __init__(
        self,
        model_name: str,
        device: str = "cuda",
        max_length: Optional[int] = None,
        attn_implementation: Optional[str] = None,
    ):
        super().__init__()
        self.device = device
        self.max_length = max_length
        self.default_instruction = "You are a helpful assistant."
        self.base_model = AutoModelForImageTextToText.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            attn_implementation=attn_implementation,
        ).to(self.device)

        self.processor = AutoProcessor.from_pretrained(model_name, min_pixels=256 * 28 * 28, max_pixels=1280 * 28 * 28)
        self.processor.tokenizer.padding_side = "left"
        self.eval()

    def encode_input(self, input):
        hidden_states = self.base_model(**input, return_dict=True, output_hidden_states=True)
        hidden_states = hidden_states.hidden_states[-1]
        pooled_output = self._pooling(hidden_states)
        return pooled_output

    def _pooling(self, last_hidden_state):
        batch_size = last_hidden_state.shape[0]
        reps = last_hidden_state[torch.arange(batch_size), -1, :]
        reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    def _validate_instructions(
        self,
        texts: Optional[List[str]],
        images: Optional[BatchImageInput],
        instruction: Optional[Union[str, List[str]]],
    ) -> List[str]:
        """Validate and format instructions to match batch size"""
        batch_size = max(len(x) if x is not None else 0 for x in [texts, images])

        if instruction is None:
            return [self.default_instruction] * batch_size

        if isinstance(instruction, str):
            return [instruction] * batch_size

        if isinstance(instruction, list):
            if len(instruction) != batch_size:
                raise ValueError(f"Length of instruction list ({len(instruction)}) must match batch size ({batch_size}) when texts/images are provided")
            return instruction

        raise TypeError("instruction must be str, List[str] or None")

    def _process_images(self, images: ImageInput) -> List[Image.Image]:
        """Convert single image or list of images to processed format"""
        if isinstance(images, Image.Image) or isinstance(images, str):
            return [fetch_image(images)]
        return [fetch_image(i) for i in images]

    def embed(
        self,
        texts: Optional[List[str]] = None,
        images: Optional[BatchImageInput] = None,
        instruction: Optional[Union[str, List[str]]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Generate embeddings for text, images, or combined inputs.

        Args:
            texts: List of text inputs (optional)
            images: Can be:
                - List[Image.Image]: Single image per input
                - List[List[Image.Image]]: Multiple images per input
            instruction: Instruction(s) for the model. Can be:
                - None: use default instruction
                - str: use same instruction for all inputs
                - List[str]: per-input instructions (must match batch size)
        """
        if texts is None and images is None:
            raise ValueError("Either texts or images must be provided")

        instructions = self._validate_instructions(texts, images, instruction)

        # Determine batch size
        batch_size = len(texts) if texts is not None else len(images)  # type: ignore

        input_texts, input_images = [], []
        for i in range(batch_size):
            text = texts[i] if texts is not None else None
            image = images[i] if images is not None else None

            input_str = ""
            processed_image = None
            if image is not None:
                processed_image = self._process_images(image)
                input_str += "<|vision_start|><|image_pad|><|vision_end|>" * len(processed_image)

            if text is not None:
                input_str += text

            msg = f"<|im_start|>system\n{instructions[i]}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"

            input_texts.append(msg)
            input_images.append(processed_image)

        # Only pass to processor if we actually have images
        processed_images = input_images if any(img is not None for img in input_images) else None

        inputs = self.processor(
            text=input_texts,
            images=processed_images,
            padding=True,
            truncation=True,
            max_length=self.max_length,
            return_tensors="pt",
        )
        inputs = {k: v.to(self.device) for k, v in inputs.items()}

        with torch.inference_mode():
            embeddings = self.encode_input(inputs)

        return embeddings

    def get_text_embeddings(
        self,
        texts: List[str],
        instruction: Optional[Union[str, List[str]]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Convenience method for text-only embeddings"""
        return self.get_fused_embeddings(texts=texts, instruction=instruction, **kwargs)

    def get_image_embeddings(
        self,
        images: BatchImageInput,
        instruction: Optional[Union[str, List[str]]] = None,
        **kwargs,
    ) -> torch.Tensor:
        """Convenience method for image-only embeddings.

        Args:
            images: Can be:
                - List[Image.Image]: Single image per input
                - List[List[Image.Image]]: Multiple images per input
        """
        return self.get_fused_embeddings(images=images, instruction=instruction, **kwargs)

    def get_fused_embeddings(
        self,
        texts: Optional[List[str]] = None,
        images: Optional[BatchImageInput] = None,
        instruction: Optional[Union[str, List[str]]] = None,
        batch_size: int = 8,
        show_progress: bool = True,
        **kwargs,
    ) -> torch.Tensor:
        """Batch processing for large collections of texts/images.

        Args:
            texts: List of text inputs (optional)
            images: Can be:
                - List[Image.Image]: Single image per input
                - List[List[Image.Image]]: Multiple images per input
            instruction: Instruction(s) for the model
            batch_size: Number of items to process at once
            show_progress: Whether to display progress bar
        """

        if texts is None and images is None:
            raise ValueError("Either texts or images must be provided")

        total_items = len(texts) if texts is not None else len(images)  # type: ignore
        num_batches = math.ceil(total_items / batch_size)

        all_embeddings = []
        progress = tqdm(total=num_batches, disable=not show_progress, desc="Processing")

        for i in range(0, total_items, batch_size):
            batch_texts = texts[i : i + batch_size] if texts is not None else None
            batch_images = images[i : i + batch_size] if images is not None else None
            batch_emb = self.embed(texts=batch_texts, images=batch_images, instruction=instruction)

            all_embeddings.append(batch_emb.cpu())
            progress.update(1)

        progress.close()
        return torch.cat(all_embeddings, dim=0).to(self.device)

    def forward(self, **inputs) -> torch.Tensor:
        """Alias for encode_input"""
        return self.encode_input(inputs)


### Modified from qwen_vl_utils.vision_process.py
import base64
import logging
import math
from io import BytesIO

import requests

IMAGE_FACTOR = 28
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1280 * 28 * 28
MAX_RATIO = 200


def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: int | float, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: int | float, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


def smart_resize(
    height: int,
    width: int,
    factor: int = IMAGE_FACTOR,
    min_pixels: int = MIN_PIXELS,
    max_pixels: int = MAX_PIXELS,
) -> tuple[int, int]:
    """
    Rescales the image so that the following conditions are met:
    1. Both dimensions (height and width) are divisible by 'factor'.
    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
    3. The aspect ratio of the image is maintained as closely as possible.
    """
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, factor)
        w_bar = floor_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, factor)
        w_bar = ceil_by_factor(width * beta, factor)

    if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
        logging.warning(f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}")
        if h_bar > w_bar:
            h_bar = w_bar * MAX_RATIO
        else:
            w_bar = h_bar * MAX_RATIO
    return h_bar, w_bar


def fetch_image(
    image: str | Image.Image,
    size_factor: int = IMAGE_FACTOR,
    min_pixels: int = MIN_PIXELS,
    max_pixels: int = MAX_PIXELS,
) -> Image.Image:
    image_obj = None
    if isinstance(image, Image.Image):
        image_obj = image
    elif image.startswith("http://") or image.startswith("https://"):
        image_obj = Image.open(requests.get(image, stream=True).raw)  # type: ignore
    elif image.startswith("file://"):
        image_obj = Image.open(image[7:])
    elif image.startswith("data:image"):
        if "base64," in image:
            _, base64_data = image.split("base64,", 1)
            data = base64.b64decode(base64_data)
            image_obj = Image.open(BytesIO(data))
    else:
        image_obj = Image.open(image)
    if image_obj is None:
        raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
    image = image_obj.convert("RGB")
    width, height = image.size
    resized_height, resized_width = smart_resize(
        height,
        width,
        factor=size_factor,
        min_pixels=min_pixels,
        max_pixels=max_pixels,
    )
    image = image.resize((resized_width, resized_height))

    return image


###