Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
### Ops-MM-embedding-v1-2B
|
2 |
|
3 |
**Ops-MM-embedding-v1-2B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
|
@@ -103,4 +115,4 @@ multi_images = [
|
|
103 |
multi_image_embeddings = model.get_image_embeddings(multi_images)
|
104 |
print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
|
105 |
|
106 |
-
```
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2-VL-2B-Instruct
|
7 |
+
tags:
|
8 |
+
- mmeb
|
9 |
+
- vidore
|
10 |
+
- colpali
|
11 |
+
- multimodal-embedding
|
12 |
+
---
|
13 |
### Ops-MM-embedding-v1-2B
|
14 |
|
15 |
**Ops-MM-embedding-v1-2B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
|
|
|
115 |
multi_image_embeddings = model.get_image_embeddings(multi_images)
|
116 |
print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
|
117 |
|
118 |
+
```
|