Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +109 -3
- added_tokens.json +16 -0
- chat_template.json +3 -0
- config.json +56 -0
- demo.py +39 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +737 -0
- ops_mm_embedding_v1.py +309 -0
- preprocessor_config.json +29 -0
- score/Ops-MM-embedding-v1-7B.json +2289 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +145 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,109 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Ops-MM-embedding-v1-7B
|
2 |
+
|
3 |
+
**Ops-MM-embedding-v1-7B** is a dense, large-scale multimodal embedding model developed and open-sourced by the Alibaba Cloud OpenSearch-AI team, fine-tuned from Qwen2-VL.
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
### **Key Features**
|
8 |
+
|
9 |
+
#### Unified Multimodal Embeddings
|
10 |
+
- Encodes text, images, text-image pairs, visual documents, and videos (by treating video frames as multiple image inputs) into a unified embedding space for cross-modal retrieval.
|
11 |
+
|
12 |
+
#### High Performance on MMEB
|
13 |
+
- Achieves **SOTA results** among models of similar scale on **MMEB-V2** and **MMEB-Image** benchmark (until 2025-07-03).
|
14 |
+
|
15 |
+
#### Multilingual Capabilities
|
16 |
+
- **Ops-MM-embedding-v1-7B** achieves SOTA performance among dense models on the ViDoRe-v2 benchmark, demonstrating strong cross-lingual generalization.
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
### Training data
|
21 |
+
|
22 |
+
MMEB-train, CC-3M, colpali training set.
|
23 |
+
|
24 |
+
|
25 |
+
### Performance
|
26 |
+
|
27 |
+
#### MMEB-V2
|
28 |
+
|
29 |
+
| Model | Model Size (B) | Overall | Image-Overall | Video-Overall | Visdoc-Overall |
|
30 |
+
| ------------------------ | -------------- | ------- | ------------- | ------------- | -------------- |
|
31 |
+
| seed-1.6-embedding | unknown | 71.57 | 77.78 | 55.34 | 74.41 |
|
32 |
+
| Ops-MM-embedding-v1-7B | 8.29 | 67.79 | 72.72 | 53.76 | 70.91 |
|
33 |
+
| Ops-MM-embedding-v1-2B | 2.21 | 63.62 | 69.03 | 47.56 | 67.55 |
|
34 |
+
| VLM2Vec-V2.0-Qwen2VL-2B | 2.21 | 58.39 | 64.85 | 34.85 | 66.34 |
|
35 |
+
| gme-Qwen2-VL-2B-Instruct | 2.21 | 54.37 | 51.89 | 33.86 | 73.47 |
|
36 |
+
|
37 |
+
---
|
38 |
+
|
39 |
+
#### MMEB-Image
|
40 |
+
|
41 |
+
The table below compares performance on MMEB-Image benchmark among models of similar size.
|
42 |
+
|
43 |
+
| Models | Model Size(B) | Image-Overall | I-CLS | I-QA | I-RET | I-VG |
|
44 |
+
| ------------------------------------- | ------------- | ------------- | ----- | ----- | ------ | ------ |
|
45 |
+
| Ops-MM-embedding-v1-7B | 8.29 | **72.72** | 69.65 | 69.58 | 73.09 | 87.15 |
|
46 |
+
| QQMM-embed | 8.297 | 72.175 | 70.07 | 69.52 | 71.175 | 87.075 |
|
47 |
+
| B3_Qwen2_7B | 8.29 | 72 | 70 | 66.5 | 74.1 | 84.6 |
|
48 |
+
| UniME(LLaVA-OneVision-7B-LoRA-Res336) | 8.03 | 70.7 | 66.8 | 66.6 | 70.5 | 90.9 |
|
49 |
+
| LLaVE-7B | 8.03 | 70.3 | 65.7 | 65.4 | 70.9 | 91.9 |
|
50 |
+
| UNITE-Instruct-7B | 8.29 | 70.3 | 68.3 | 65.1 | 71.6 | 84.8 |
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
#### ViDoRe-v2
|
55 |
+
|
56 |
+
| Model | Avg | ESG Restaurant Human | MIT Bio | Econ. Macro | ESG Restaurant Synth. | MIT Bio Multi. | Econ Macro Multi. | ESG Restaurant Synth. Multi. |
|
57 |
+
| ---------------------- | -------- | -------------------- | ------- | ----------- | --------------------- | -------------- | ----------------- | ---------------------------- |
|
58 |
+
| gme-7B | 59.3 | 65.8 | 64 | 62.9 | 54.3 | 55.1 | 56.2 | 56.7 |
|
59 |
+
| seed 1.6 embedding | 58.9 | 63.3 | 63.9 | 64.0 | 58.4 | 57.1 | 53.8 | 52.0 |
|
60 |
+
| Ops-MM-embedding-v1-7B | **60.6** | 66.3 | 58.4 | 67.4 | 60.0 | 54.3 | 60.9 | 56.8 |
|
61 |
+
| Ops-MM-embedding-v1-2B | 54.4 | 58.6 | 56.0 | 56.4 | 55.8 | 52.9 | 47.9 | 53.4 |
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
## Usage
|
67 |
+
|
68 |
+
```python
|
69 |
+
from ops_mm_embedding_v1 import OpsMMEmbeddingV1, fetch_image
|
70 |
+
|
71 |
+
|
72 |
+
model = OpsMMEmbeddingV1(
|
73 |
+
"OpenSearch-AI/Ops-MM-embedding-v1-7B",
|
74 |
+
device="cuda",
|
75 |
+
attn_implementation="flash_attention_2"
|
76 |
+
)
|
77 |
+
|
78 |
+
t2i_prompt = "Find an image that matches the given text."
|
79 |
+
texts = [
|
80 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
81 |
+
"Alibaba office.",
|
82 |
+
"Alibaba office.",
|
83 |
+
]
|
84 |
+
images = [
|
85 |
+
"https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg",
|
86 |
+
"https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg",
|
87 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Alibaba_Binjiang_Park.jpg/1024px-Alibaba_Binjiang_Park.jpg"
|
88 |
+
]
|
89 |
+
|
90 |
+
images = [fetch_image(image) for image in images]
|
91 |
+
|
92 |
+
# Text and image embedding
|
93 |
+
text_embeddings = model.get_text_embeddings(texts)
|
94 |
+
image_embeddings = model.get_image_embeddings(images)
|
95 |
+
print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
|
96 |
+
|
97 |
+
# Fused Embedding
|
98 |
+
text_with_image_embeddings = model.get_fused_embeddings(texts=texts, images=images, instruction=t2i_prompt)
|
99 |
+
print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
|
100 |
+
|
101 |
+
# Multi-image embeddings
|
102 |
+
multi_images = [
|
103 |
+
[images[0]],
|
104 |
+
[images[1], images[2]],
|
105 |
+
]
|
106 |
+
multi_image_embeddings = model.get_image_embeddings(multi_images)
|
107 |
+
print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
|
108 |
+
|
109 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2VLForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"image_token_id": 151655,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2_vl",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": {
|
21 |
+
"mrope_section": [
|
22 |
+
16,
|
23 |
+
24,
|
24 |
+
24
|
25 |
+
],
|
26 |
+
"rope_type": "default",
|
27 |
+
"type": "default"
|
28 |
+
},
|
29 |
+
"rope_theta": 1000000.0,
|
30 |
+
"sliding_window": 32768,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.51.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"use_sliding_window": false,
|
36 |
+
"video_token_id": 151656,
|
37 |
+
"vision_config": {
|
38 |
+
"depth": 32,
|
39 |
+
"embed_dim": 1280,
|
40 |
+
"hidden_act": "quick_gelu",
|
41 |
+
"hidden_size": 3584,
|
42 |
+
"in_channels": 3,
|
43 |
+
"in_chans": 3,
|
44 |
+
"mlp_ratio": 4,
|
45 |
+
"model_type": "qwen2_vl",
|
46 |
+
"num_heads": 16,
|
47 |
+
"patch_size": 14,
|
48 |
+
"spatial_merge_size": 2,
|
49 |
+
"spatial_patch_size": 14,
|
50 |
+
"temporal_patch_size": 2
|
51 |
+
},
|
52 |
+
"vision_end_token_id": 151653,
|
53 |
+
"vision_start_token_id": 151652,
|
54 |
+
"vision_token_id": 151654,
|
55 |
+
"vocab_size": 152064
|
56 |
+
}
|
demo.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ops_mm_embedding_v1 import OpsMMEmbeddingV1, fetch_image
|
2 |
+
|
3 |
+
|
4 |
+
model = OpsMMEmbeddingV1(
|
5 |
+
"OpenSearch-AI/Ops-MM-embedding-v1-7B",
|
6 |
+
device="cuda",
|
7 |
+
attn_implementation="flash_attention_2"
|
8 |
+
)
|
9 |
+
|
10 |
+
t2i_prompt = "Find an image that matches the given text."
|
11 |
+
texts = [
|
12 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
|
13 |
+
"Alibaba office.",
|
14 |
+
"Alibaba office.",
|
15 |
+
]
|
16 |
+
images = [
|
17 |
+
"https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg",
|
18 |
+
"https://upload.wikimedia.org/wikipedia/commons/e/e0/TaobaoCity_Alibaba_Xixi_Park.jpg",
|
19 |
+
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Alibaba_Binjiang_Park.jpg/1024px-Alibaba_Binjiang_Park.jpg"
|
20 |
+
]
|
21 |
+
|
22 |
+
images = [fetch_image(image) for image in images]
|
23 |
+
|
24 |
+
# Text and image embedding
|
25 |
+
text_embeddings = model.get_text_embeddings(texts)
|
26 |
+
image_embeddings = model.get_image_embeddings(images)
|
27 |
+
print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
|
28 |
+
|
29 |
+
# Fused Embedding
|
30 |
+
text_with_image_embeddings = model.get_fused_embeddings(texts=texts, images=images, instruction=t2i_prompt)
|
31 |
+
print('Text and image embeddings', (text_embeddings @ image_embeddings.T).tolist())
|
32 |
+
|
33 |
+
# Multi-image embeddings
|
34 |
+
multi_images = [
|
35 |
+
[images[0]],
|
36 |
+
[images[1], images[2]],
|
37 |
+
]
|
38 |
+
multi_image_embeddings = model.get_image_embeddings(multi_images)
|
39 |
+
print('Multi-image embeddings', (multi_image_embeddings @ multi_image_embeddings.T).tolist())
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.01,
|
10 |
+
"top_k": 1,
|
11 |
+
"top_p": 0.001,
|
12 |
+
"transformers_version": "4.51.1"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4185606d530d99b1bec0f01060de12fe659e47f2f85fa2a391e3119f7141283a
|
3 |
+
size 4966659944
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:239f228a09c8812e92b21d663830f471127dc6718e70ee66a9b3c6199c07fb37
|
3 |
+
size 4991495816
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8d8f54412ec8ab7d2674226038a15166891a44672612af950cf184c9f3ee3dd
|
3 |
+
size 4932751040
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4b6498a60113a3998a8a7f8e86a9df5501dd8b0d203d0b557f8a6a6851cff17
|
3 |
+
size 1691924384
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16582751232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
364 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
|
378 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
|
392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"visual.merger.ln_q.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
736 |
+
}
|
737 |
+
}
|
ops_mm_embedding_v1.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, TypeAlias, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
9 |
+
|
10 |
+
ImageInput: TypeAlias = Union[Image.Image, List[Image.Image]]
|
11 |
+
BatchImageInput: TypeAlias = Union[List[Image.Image], List[List[Image.Image]]]
|
12 |
+
|
13 |
+
|
14 |
+
class OpsMMEmbeddingV1(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
model_name: str,
|
18 |
+
device: str = "cuda",
|
19 |
+
max_length: Optional[int] = None,
|
20 |
+
attn_implementation: Optional[str] = None,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
self.device = device
|
24 |
+
self.max_length = max_length
|
25 |
+
self.default_instruction = "You are a helpful assistant."
|
26 |
+
self.base_model = AutoModelForImageTextToText.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
low_cpu_mem_usage=True,
|
30 |
+
attn_implementation=attn_implementation,
|
31 |
+
).to(self.device)
|
32 |
+
|
33 |
+
self.processor = AutoProcessor.from_pretrained(model_name, min_pixels=256 * 28 * 28, max_pixels=1280 * 28 * 28)
|
34 |
+
self.processor.tokenizer.padding_side = "left"
|
35 |
+
self.eval()
|
36 |
+
|
37 |
+
def encode_input(self, input):
|
38 |
+
hidden_states = self.base_model(**input, return_dict=True, output_hidden_states=True)
|
39 |
+
hidden_states = hidden_states.hidden_states[-1]
|
40 |
+
pooled_output = self._pooling(hidden_states)
|
41 |
+
return pooled_output
|
42 |
+
|
43 |
+
def _pooling(self, last_hidden_state):
|
44 |
+
batch_size = last_hidden_state.shape[0]
|
45 |
+
reps = last_hidden_state[torch.arange(batch_size), -1, :]
|
46 |
+
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
|
47 |
+
return reps
|
48 |
+
|
49 |
+
def _validate_instructions(
|
50 |
+
self,
|
51 |
+
texts: Optional[List[str]],
|
52 |
+
images: Optional[BatchImageInput],
|
53 |
+
instruction: Optional[Union[str, List[str]]],
|
54 |
+
) -> List[str]:
|
55 |
+
"""Validate and format instructions to match batch size"""
|
56 |
+
batch_size = max(len(x) if x is not None else 0 for x in [texts, images])
|
57 |
+
|
58 |
+
if instruction is None:
|
59 |
+
return [self.default_instruction] * batch_size
|
60 |
+
|
61 |
+
if isinstance(instruction, str):
|
62 |
+
return [instruction] * batch_size
|
63 |
+
|
64 |
+
if isinstance(instruction, list):
|
65 |
+
if len(instruction) != batch_size:
|
66 |
+
raise ValueError(f"Length of instruction list ({len(instruction)}) must match batch size ({batch_size}) when texts/images are provided")
|
67 |
+
return instruction
|
68 |
+
|
69 |
+
raise TypeError("instruction must be str, List[str] or None")
|
70 |
+
|
71 |
+
def _process_images(self, images: ImageInput) -> List[Image.Image]:
|
72 |
+
"""Convert single image or list of images to processed format"""
|
73 |
+
if isinstance(images, Image.Image) or isinstance(images, str):
|
74 |
+
return [fetch_image(images)]
|
75 |
+
return [fetch_image(i) for i in images]
|
76 |
+
|
77 |
+
def embed(
|
78 |
+
self,
|
79 |
+
texts: Optional[List[str]] = None,
|
80 |
+
images: Optional[BatchImageInput] = None,
|
81 |
+
instruction: Optional[Union[str, List[str]]] = None,
|
82 |
+
**kwargs,
|
83 |
+
) -> torch.Tensor:
|
84 |
+
"""Generate embeddings for text, images, or combined inputs.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
texts: List of text inputs (optional)
|
88 |
+
images: Can be:
|
89 |
+
- List[Image.Image]: Single image per input
|
90 |
+
- List[List[Image.Image]]: Multiple images per input
|
91 |
+
instruction: Instruction(s) for the model. Can be:
|
92 |
+
- None: use default instruction
|
93 |
+
- str: use same instruction for all inputs
|
94 |
+
- List[str]: per-input instructions (must match batch size)
|
95 |
+
"""
|
96 |
+
if texts is None and images is None:
|
97 |
+
raise ValueError("Either texts or images must be provided")
|
98 |
+
|
99 |
+
instructions = self._validate_instructions(texts, images, instruction)
|
100 |
+
|
101 |
+
# Determine batch size
|
102 |
+
batch_size = len(texts) if texts is not None else len(images) # type: ignore
|
103 |
+
|
104 |
+
input_texts, input_images = [], []
|
105 |
+
for i in range(batch_size):
|
106 |
+
text = texts[i] if texts is not None else None
|
107 |
+
image = images[i] if images is not None else None
|
108 |
+
|
109 |
+
input_str = ""
|
110 |
+
processed_image = None
|
111 |
+
if image is not None:
|
112 |
+
processed_image = self._process_images(image)
|
113 |
+
input_str += "<|vision_start|><|image_pad|><|vision_end|>" * len(processed_image)
|
114 |
+
|
115 |
+
if text is not None:
|
116 |
+
input_str += text
|
117 |
+
|
118 |
+
msg = f"<|im_start|>system\n{instructions[i]}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
|
119 |
+
|
120 |
+
input_texts.append(msg)
|
121 |
+
input_images.append(processed_image)
|
122 |
+
|
123 |
+
# Only pass to processor if we actually have images
|
124 |
+
processed_images = input_images if any(img is not None for img in input_images) else None
|
125 |
+
|
126 |
+
inputs = self.processor(
|
127 |
+
text=input_texts,
|
128 |
+
images=processed_images,
|
129 |
+
padding=True,
|
130 |
+
truncation=True,
|
131 |
+
max_length=self.max_length,
|
132 |
+
return_tensors="pt",
|
133 |
+
)
|
134 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
135 |
+
|
136 |
+
with torch.inference_mode():
|
137 |
+
embeddings = self.encode_input(inputs)
|
138 |
+
|
139 |
+
return embeddings
|
140 |
+
|
141 |
+
def get_text_embeddings(
|
142 |
+
self,
|
143 |
+
texts: List[str],
|
144 |
+
instruction: Optional[Union[str, List[str]]] = None,
|
145 |
+
**kwargs,
|
146 |
+
) -> torch.Tensor:
|
147 |
+
"""Convenience method for text-only embeddings"""
|
148 |
+
return self.get_fused_embeddings(texts=texts, instruction=instruction, **kwargs)
|
149 |
+
|
150 |
+
def get_image_embeddings(
|
151 |
+
self,
|
152 |
+
images: BatchImageInput,
|
153 |
+
instruction: Optional[Union[str, List[str]]] = None,
|
154 |
+
**kwargs,
|
155 |
+
) -> torch.Tensor:
|
156 |
+
"""Convenience method for image-only embeddings.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
images: Can be:
|
160 |
+
- List[Image.Image]: Single image per input
|
161 |
+
- List[List[Image.Image]]: Multiple images per input
|
162 |
+
"""
|
163 |
+
return self.get_fused_embeddings(images=images, instruction=instruction, **kwargs)
|
164 |
+
|
165 |
+
def get_fused_embeddings(
|
166 |
+
self,
|
167 |
+
texts: Optional[List[str]] = None,
|
168 |
+
images: Optional[BatchImageInput] = None,
|
169 |
+
instruction: Optional[Union[str, List[str]]] = None,
|
170 |
+
batch_size: int = 8,
|
171 |
+
show_progress: bool = True,
|
172 |
+
**kwargs,
|
173 |
+
) -> torch.Tensor:
|
174 |
+
"""Batch processing for large collections of texts/images.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
texts: List of text inputs (optional)
|
178 |
+
images: Can be:
|
179 |
+
- List[Image.Image]: Single image per input
|
180 |
+
- List[List[Image.Image]]: Multiple images per input
|
181 |
+
instruction: Instruction(s) for the model
|
182 |
+
batch_size: Number of items to process at once
|
183 |
+
show_progress: Whether to display progress bar
|
184 |
+
"""
|
185 |
+
|
186 |
+
if texts is None and images is None:
|
187 |
+
raise ValueError("Either texts or images must be provided")
|
188 |
+
|
189 |
+
total_items = len(texts) if texts is not None else len(images) # type: ignore
|
190 |
+
num_batches = math.ceil(total_items / batch_size)
|
191 |
+
|
192 |
+
all_embeddings = []
|
193 |
+
progress = tqdm(total=num_batches, disable=not show_progress, desc="Processing")
|
194 |
+
|
195 |
+
for i in range(0, total_items, batch_size):
|
196 |
+
batch_texts = texts[i : i + batch_size] if texts is not None else None
|
197 |
+
batch_images = images[i : i + batch_size] if images is not None else None
|
198 |
+
batch_emb = self.embed(texts=batch_texts, images=batch_images, instruction=instruction)
|
199 |
+
|
200 |
+
all_embeddings.append(batch_emb.cpu())
|
201 |
+
progress.update(1)
|
202 |
+
|
203 |
+
progress.close()
|
204 |
+
return torch.cat(all_embeddings, dim=0).to(self.device)
|
205 |
+
|
206 |
+
def forward(self, **inputs) -> torch.Tensor:
|
207 |
+
"""Alias for encode_input"""
|
208 |
+
return self.encode_input(inputs)
|
209 |
+
|
210 |
+
|
211 |
+
### Modified from qwen_vl_utils.vision_process.py
|
212 |
+
import base64
|
213 |
+
import logging
|
214 |
+
import math
|
215 |
+
from io import BytesIO
|
216 |
+
|
217 |
+
import requests
|
218 |
+
|
219 |
+
IMAGE_FACTOR = 28
|
220 |
+
MIN_PIXELS = 256 * 28 * 28
|
221 |
+
MAX_PIXELS = 1280 * 28 * 28
|
222 |
+
MAX_RATIO = 200
|
223 |
+
|
224 |
+
|
225 |
+
def round_by_factor(number: int, factor: int) -> int:
|
226 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
227 |
+
return round(number / factor) * factor
|
228 |
+
|
229 |
+
|
230 |
+
def ceil_by_factor(number: int | float, factor: int) -> int:
|
231 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
232 |
+
return math.ceil(number / factor) * factor
|
233 |
+
|
234 |
+
|
235 |
+
def floor_by_factor(number: int | float, factor: int) -> int:
|
236 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
237 |
+
return math.floor(number / factor) * factor
|
238 |
+
|
239 |
+
|
240 |
+
def smart_resize(
|
241 |
+
height: int,
|
242 |
+
width: int,
|
243 |
+
factor: int = IMAGE_FACTOR,
|
244 |
+
min_pixels: int = MIN_PIXELS,
|
245 |
+
max_pixels: int = MAX_PIXELS,
|
246 |
+
) -> tuple[int, int]:
|
247 |
+
"""
|
248 |
+
Rescales the image so that the following conditions are met:
|
249 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
250 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
251 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
252 |
+
"""
|
253 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
254 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
255 |
+
if h_bar * w_bar > max_pixels:
|
256 |
+
beta = math.sqrt((height * width) / max_pixels)
|
257 |
+
h_bar = floor_by_factor(height / beta, factor)
|
258 |
+
w_bar = floor_by_factor(width / beta, factor)
|
259 |
+
elif h_bar * w_bar < min_pixels:
|
260 |
+
beta = math.sqrt(min_pixels / (height * width))
|
261 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
262 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
263 |
+
|
264 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
265 |
+
logging.warning(f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}")
|
266 |
+
if h_bar > w_bar:
|
267 |
+
h_bar = w_bar * MAX_RATIO
|
268 |
+
else:
|
269 |
+
w_bar = h_bar * MAX_RATIO
|
270 |
+
return h_bar, w_bar
|
271 |
+
|
272 |
+
|
273 |
+
def fetch_image(
|
274 |
+
image: str | Image.Image,
|
275 |
+
size_factor: int = IMAGE_FACTOR,
|
276 |
+
min_pixels: int = MIN_PIXELS,
|
277 |
+
max_pixels: int = MAX_PIXELS,
|
278 |
+
) -> Image.Image:
|
279 |
+
image_obj = None
|
280 |
+
if isinstance(image, Image.Image):
|
281 |
+
image_obj = image
|
282 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
283 |
+
image_obj = Image.open(requests.get(image, stream=True).raw) # type: ignore
|
284 |
+
elif image.startswith("file://"):
|
285 |
+
image_obj = Image.open(image[7:])
|
286 |
+
elif image.startswith("data:image"):
|
287 |
+
if "base64," in image:
|
288 |
+
_, base64_data = image.split("base64,", 1)
|
289 |
+
data = base64.b64decode(base64_data)
|
290 |
+
image_obj = Image.open(BytesIO(data))
|
291 |
+
else:
|
292 |
+
image_obj = Image.open(image)
|
293 |
+
if image_obj is None:
|
294 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
295 |
+
image = image_obj.convert("RGB")
|
296 |
+
width, height = image.size
|
297 |
+
resized_height, resized_width = smart_resize(
|
298 |
+
height,
|
299 |
+
width,
|
300 |
+
factor=size_factor,
|
301 |
+
min_pixels=min_pixels,
|
302 |
+
max_pixels=max_pixels,
|
303 |
+
)
|
304 |
+
image = image.resize((resized_width, resized_height))
|
305 |
+
|
306 |
+
return image
|
307 |
+
|
308 |
+
|
309 |
+
###
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"longest_edge": 12845056,
|
26 |
+
"shortest_edge": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
score/Ops-MM-embedding-v1-7B.json
ADDED
@@ -0,0 +1,2289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"model_name": "Ops-MM-embedding-v1-7B",
|
4 |
+
"model_backbone": "Qwen2-VL-7B",
|
5 |
+
"model_size": 8.29,
|
6 |
+
"embedding_dimension": 3584,
|
7 |
+
"max_length_tokens": null,
|
8 |
+
"model_release_date": "2025-07-03",
|
9 |
+
"data_source": "OpenSearch-AI",
|
10 |
+
"url": "https://huggingface.co/OpenSearch-AI/Ops-MM-embedding-v1-7B",
|
11 |
+
"report_generated_date": "2025-07-02T23:11:24.116227"
|
12 |
+
},
|
13 |
+
"metrics": {
|
14 |
+
"image": {
|
15 |
+
"ImageNet-1K": {
|
16 |
+
"hit@1": 0.811,
|
17 |
+
"hit@5": 0.964,
|
18 |
+
"hit@10": 0.982,
|
19 |
+
"ndcg_linear@1": 0.811,
|
20 |
+
"ndcg_linear@5": 0.8972089841991893,
|
21 |
+
"ndcg_linear@10": 0.903203094426922,
|
22 |
+
"ndcg_exponential@1": 0.811,
|
23 |
+
"ndcg_exponential@5": 0.8972089841991893,
|
24 |
+
"ndcg_exponential@10": 0.903203094426922,
|
25 |
+
"precision@1": 0.811,
|
26 |
+
"precision@5": 0.1928,
|
27 |
+
"precision@10": 0.09820000000000002,
|
28 |
+
"recall@1": 0.811,
|
29 |
+
"recall@5": 0.964,
|
30 |
+
"recall@10": 0.982,
|
31 |
+
"f1@1": 0.811,
|
32 |
+
"f1@5": 0.32133333333333336,
|
33 |
+
"f1@10": 0.17854545454545453,
|
34 |
+
"map@1": 0.811,
|
35 |
+
"map@5": 0.8745833333333333,
|
36 |
+
"map@10": 0.8771603174603174,
|
37 |
+
"mrr@1": 0.811,
|
38 |
+
"mrr@5": 0.8745833333333333,
|
39 |
+
"mrr@10": 0.8771603174603174,
|
40 |
+
"num_pred": 1000,
|
41 |
+
"num_data": 1000
|
42 |
+
},
|
43 |
+
"N24News": {
|
44 |
+
"hit@1": 0.821,
|
45 |
+
"hit@5": 0.974,
|
46 |
+
"hit@10": 0.998,
|
47 |
+
"ndcg_linear@1": 0.821,
|
48 |
+
"ndcg_linear@5": 0.908003904347735,
|
49 |
+
"ndcg_linear@10": 0.9159637568629064,
|
50 |
+
"ndcg_exponential@1": 0.821,
|
51 |
+
"ndcg_exponential@5": 0.908003904347735,
|
52 |
+
"ndcg_exponential@10": 0.9159637568629064,
|
53 |
+
"precision@1": 0.821,
|
54 |
+
"precision@5": 0.1948,
|
55 |
+
"precision@10": 0.09980000000000001,
|
56 |
+
"recall@1": 0.821,
|
57 |
+
"recall@5": 0.974,
|
58 |
+
"recall@10": 0.998,
|
59 |
+
"f1@1": 0.821,
|
60 |
+
"f1@5": 0.3246666666666666,
|
61 |
+
"f1@10": 0.18145454545454545,
|
62 |
+
"map@1": 0.821,
|
63 |
+
"map@5": 0.8855333333333333,
|
64 |
+
"map@10": 0.8889365079365079,
|
65 |
+
"mrr@1": 0.821,
|
66 |
+
"mrr@5": 0.8855333333333333,
|
67 |
+
"mrr@10": 0.8889365079365079,
|
68 |
+
"num_pred": 1000,
|
69 |
+
"num_data": 1000
|
70 |
+
},
|
71 |
+
"HatefulMemes": {
|
72 |
+
"hit@1": 0.757,
|
73 |
+
"hit@5": 1.0,
|
74 |
+
"hit@10": 1.0,
|
75 |
+
"ndcg_linear@1": 0.757,
|
76 |
+
"ndcg_linear@5": 0.9103159301178643,
|
77 |
+
"ndcg_linear@10": 0.9103159301178643,
|
78 |
+
"ndcg_exponential@1": 0.757,
|
79 |
+
"ndcg_exponential@5": 0.9103159301178643,
|
80 |
+
"ndcg_exponential@10": 0.9103159301178643,
|
81 |
+
"precision@1": 0.757,
|
82 |
+
"precision@5": 0.20000000000000004,
|
83 |
+
"precision@10": 0.10000000000000002,
|
84 |
+
"recall@1": 0.757,
|
85 |
+
"recall@5": 1.0,
|
86 |
+
"recall@10": 1.0,
|
87 |
+
"f1@1": 0.757,
|
88 |
+
"f1@5": 0.3333333333333333,
|
89 |
+
"f1@10": 0.18181818181818182,
|
90 |
+
"map@1": 0.757,
|
91 |
+
"map@5": 0.8785,
|
92 |
+
"map@10": 0.8785,
|
93 |
+
"mrr@1": 0.757,
|
94 |
+
"mrr@5": 0.8785,
|
95 |
+
"mrr@10": 0.8785,
|
96 |
+
"num_pred": 1000,
|
97 |
+
"num_data": 1000
|
98 |
+
},
|
99 |
+
"VOC2007": {
|
100 |
+
"hit@1": 0.848,
|
101 |
+
"hit@5": 0.977,
|
102 |
+
"hit@10": 0.992,
|
103 |
+
"ndcg_linear@1": 0.848,
|
104 |
+
"ndcg_linear@5": 0.9241752272291508,
|
105 |
+
"ndcg_linear@10": 0.9290490649008084,
|
106 |
+
"ndcg_exponential@1": 0.848,
|
107 |
+
"ndcg_exponential@5": 0.9241752272291508,
|
108 |
+
"ndcg_exponential@10": 0.9290490649008084,
|
109 |
+
"precision@1": 0.848,
|
110 |
+
"precision@5": 0.19540000000000005,
|
111 |
+
"precision@10": 0.09920000000000001,
|
112 |
+
"recall@1": 0.848,
|
113 |
+
"recall@5": 0.977,
|
114 |
+
"recall@10": 0.992,
|
115 |
+
"f1@1": 0.848,
|
116 |
+
"f1@5": 0.3256666666666666,
|
117 |
+
"f1@10": 0.18036363636363634,
|
118 |
+
"map@1": 0.848,
|
119 |
+
"map@5": 0.9059333333333334,
|
120 |
+
"map@10": 0.9079559523809524,
|
121 |
+
"mrr@1": 0.848,
|
122 |
+
"mrr@5": 0.9059333333333334,
|
123 |
+
"mrr@10": 0.9079559523809524,
|
124 |
+
"num_pred": 1000,
|
125 |
+
"num_data": 1000
|
126 |
+
},
|
127 |
+
"SUN397": {
|
128 |
+
"hit@1": 0.81,
|
129 |
+
"hit@5": 0.975,
|
130 |
+
"hit@10": 0.993,
|
131 |
+
"ndcg_linear@1": 0.81,
|
132 |
+
"ndcg_linear@5": 0.9044714381294062,
|
133 |
+
"ndcg_linear@10": 0.9104367712161627,
|
134 |
+
"ndcg_exponential@1": 0.81,
|
135 |
+
"ndcg_exponential@5": 0.9044714381294062,
|
136 |
+
"ndcg_exponential@10": 0.9104367712161627,
|
137 |
+
"precision@1": 0.81,
|
138 |
+
"precision@5": 0.19500000000000003,
|
139 |
+
"precision@10": 0.09930000000000001,
|
140 |
+
"recall@1": 0.81,
|
141 |
+
"recall@5": 0.975,
|
142 |
+
"recall@10": 0.993,
|
143 |
+
"f1@1": 0.81,
|
144 |
+
"f1@5": 0.325,
|
145 |
+
"f1@10": 0.1805454545454545,
|
146 |
+
"map@1": 0.81,
|
147 |
+
"map@5": 0.8804500000000001,
|
148 |
+
"map@10": 0.8829964285714286,
|
149 |
+
"mrr@1": 0.81,
|
150 |
+
"mrr@5": 0.8804500000000001,
|
151 |
+
"mrr@10": 0.8829964285714286,
|
152 |
+
"num_pred": 1000,
|
153 |
+
"num_data": 1000
|
154 |
+
},
|
155 |
+
"Place365": {
|
156 |
+
"hit@1": 0.456,
|
157 |
+
"hit@5": 0.742,
|
158 |
+
"hit@10": 0.832,
|
159 |
+
"ndcg_linear@1": 0.456,
|
160 |
+
"ndcg_linear@5": 0.612464933944354,
|
161 |
+
"ndcg_linear@10": 0.6421212605535749,
|
162 |
+
"ndcg_exponential@1": 0.456,
|
163 |
+
"ndcg_exponential@5": 0.612464933944354,
|
164 |
+
"ndcg_exponential@10": 0.6421212605535749,
|
165 |
+
"precision@1": 0.456,
|
166 |
+
"precision@5": 0.14839999999999998,
|
167 |
+
"precision@10": 0.08320000000000002,
|
168 |
+
"recall@1": 0.456,
|
169 |
+
"recall@5": 0.742,
|
170 |
+
"recall@10": 0.832,
|
171 |
+
"f1@1": 0.456,
|
172 |
+
"f1@5": 0.24733333333333338,
|
173 |
+
"f1@10": 0.15127272727272728,
|
174 |
+
"map@1": 0.456,
|
175 |
+
"map@5": 0.5689833333333334,
|
176 |
+
"map@10": 0.5815511904761905,
|
177 |
+
"mrr@1": 0.456,
|
178 |
+
"mrr@5": 0.5689833333333334,
|
179 |
+
"mrr@10": 0.5815511904761905,
|
180 |
+
"num_pred": 1000,
|
181 |
+
"num_data": 1000
|
182 |
+
},
|
183 |
+
"ImageNet-A": {
|
184 |
+
"hit@1": 0.578,
|
185 |
+
"hit@5": 0.814,
|
186 |
+
"hit@10": 0.873,
|
187 |
+
"ndcg_linear@1": 0.578,
|
188 |
+
"ndcg_linear@5": 0.7067527294684098,
|
189 |
+
"ndcg_linear@10": 0.7260494542589042,
|
190 |
+
"ndcg_exponential@1": 0.578,
|
191 |
+
"ndcg_exponential@5": 0.7067527294684098,
|
192 |
+
"ndcg_exponential@10": 0.7260494542589042,
|
193 |
+
"precision@1": 0.578,
|
194 |
+
"precision@5": 0.1628,
|
195 |
+
"precision@10": 0.08730000000000002,
|
196 |
+
"recall@1": 0.578,
|
197 |
+
"recall@5": 0.814,
|
198 |
+
"recall@10": 0.873,
|
199 |
+
"f1@1": 0.578,
|
200 |
+
"f1@5": 0.27133333333333337,
|
201 |
+
"f1@10": 0.15872727272727272,
|
202 |
+
"map@1": 0.578,
|
203 |
+
"map@5": 0.67075,
|
204 |
+
"map@10": 0.6788373015873016,
|
205 |
+
"mrr@1": 0.578,
|
206 |
+
"mrr@5": 0.67075,
|
207 |
+
"mrr@10": 0.6788373015873016,
|
208 |
+
"num_pred": 1000,
|
209 |
+
"num_data": 1000
|
210 |
+
},
|
211 |
+
"ImageNet-R": {
|
212 |
+
"hit@1": 0.902,
|
213 |
+
"hit@5": 0.981,
|
214 |
+
"hit@10": 0.992,
|
215 |
+
"ndcg_linear@1": 0.902,
|
216 |
+
"ndcg_linear@5": 0.9490524502565482,
|
217 |
+
"ndcg_linear@10": 0.9525844230009524,
|
218 |
+
"ndcg_exponential@1": 0.902,
|
219 |
+
"ndcg_exponential@5": 0.9490524502565482,
|
220 |
+
"ndcg_exponential@10": 0.9525844230009524,
|
221 |
+
"precision@1": 0.902,
|
222 |
+
"precision@5": 0.19620000000000004,
|
223 |
+
"precision@10": 0.09920000000000001,
|
224 |
+
"recall@1": 0.902,
|
225 |
+
"recall@5": 0.981,
|
226 |
+
"recall@10": 0.992,
|
227 |
+
"f1@1": 0.902,
|
228 |
+
"f1@5": 0.327,
|
229 |
+
"f1@10": 0.18036363636363634,
|
230 |
+
"map@1": 0.902,
|
231 |
+
"map@5": 0.9379833333333334,
|
232 |
+
"map@10": 0.9394273809523809,
|
233 |
+
"mrr@1": 0.902,
|
234 |
+
"mrr@5": 0.9379833333333334,
|
235 |
+
"mrr@10": 0.9394273809523809,
|
236 |
+
"num_pred": 1000,
|
237 |
+
"num_data": 1000
|
238 |
+
},
|
239 |
+
"ObjectNet": {
|
240 |
+
"hit@1": 0.697,
|
241 |
+
"hit@5": 0.876,
|
242 |
+
"hit@10": 0.912,
|
243 |
+
"ndcg_linear@1": 0.697,
|
244 |
+
"ndcg_linear@5": 0.7998091251553962,
|
245 |
+
"ndcg_linear@10": 0.8114293964429173,
|
246 |
+
"ndcg_exponential@1": 0.697,
|
247 |
+
"ndcg_exponential@5": 0.7998091251553962,
|
248 |
+
"ndcg_exponential@10": 0.8114293964429173,
|
249 |
+
"precision@1": 0.697,
|
250 |
+
"precision@5": 0.17520000000000002,
|
251 |
+
"precision@10": 0.09120000000000002,
|
252 |
+
"recall@1": 0.697,
|
253 |
+
"recall@5": 0.876,
|
254 |
+
"recall@10": 0.912,
|
255 |
+
"f1@1": 0.697,
|
256 |
+
"f1@5": 0.292,
|
257 |
+
"f1@10": 0.1658181818181818,
|
258 |
+
"map@1": 0.697,
|
259 |
+
"map@5": 0.7738333333333334,
|
260 |
+
"map@10": 0.778622619047619,
|
261 |
+
"mrr@1": 0.697,
|
262 |
+
"mrr@5": 0.7738333333333334,
|
263 |
+
"mrr@10": 0.778622619047619,
|
264 |
+
"num_pred": 1000,
|
265 |
+
"num_data": 1000
|
266 |
+
},
|
267 |
+
"Country211": {
|
268 |
+
"hit@1": 0.285,
|
269 |
+
"hit@5": 0.506,
|
270 |
+
"hit@10": 0.609,
|
271 |
+
"ndcg_linear@1": 0.285,
|
272 |
+
"ndcg_linear@5": 0.40328589269051235,
|
273 |
+
"ndcg_linear@10": 0.4360567158341879,
|
274 |
+
"ndcg_exponential@1": 0.285,
|
275 |
+
"ndcg_exponential@5": 0.40328589269051235,
|
276 |
+
"ndcg_exponential@10": 0.4360567158341879,
|
277 |
+
"precision@1": 0.285,
|
278 |
+
"precision@5": 0.10119999999999998,
|
279 |
+
"precision@10": 0.06089999999999999,
|
280 |
+
"recall@1": 0.285,
|
281 |
+
"recall@5": 0.506,
|
282 |
+
"recall@10": 0.609,
|
283 |
+
"f1@1": 0.285,
|
284 |
+
"f1@5": 0.1686666666666667,
|
285 |
+
"f1@10": 0.11072727272727274,
|
286 |
+
"map@1": 0.285,
|
287 |
+
"map@5": 0.36905,
|
288 |
+
"map@10": 0.3822527777777777,
|
289 |
+
"mrr@1": 0.285,
|
290 |
+
"mrr@5": 0.36905,
|
291 |
+
"mrr@10": 0.3822527777777777,
|
292 |
+
"num_pred": 1000,
|
293 |
+
"num_data": 1000
|
294 |
+
},
|
295 |
+
"OK-VQA": {
|
296 |
+
"hit@1": 0.706,
|
297 |
+
"hit@5": 0.935,
|
298 |
+
"hit@10": 0.97,
|
299 |
+
"ndcg_linear@1": 0.706,
|
300 |
+
"ndcg_linear@5": 0.8344075880155006,
|
301 |
+
"ndcg_linear@10": 0.8459473006000523,
|
302 |
+
"ndcg_exponential@1": 0.706,
|
303 |
+
"ndcg_exponential@5": 0.8344075880155006,
|
304 |
+
"ndcg_exponential@10": 0.8459473006000523,
|
305 |
+
"precision@1": 0.706,
|
306 |
+
"precision@5": 0.18700000000000003,
|
307 |
+
"precision@10": 0.097,
|
308 |
+
"recall@1": 0.706,
|
309 |
+
"recall@5": 0.935,
|
310 |
+
"recall@10": 0.97,
|
311 |
+
"f1@1": 0.706,
|
312 |
+
"f1@5": 0.3116666666666667,
|
313 |
+
"f1@10": 0.17636363636363633,
|
314 |
+
"map@1": 0.706,
|
315 |
+
"map@5": 0.8004,
|
316 |
+
"map@10": 0.805288492063492,
|
317 |
+
"mrr@1": 0.706,
|
318 |
+
"mrr@5": 0.8004,
|
319 |
+
"mrr@10": 0.805288492063492,
|
320 |
+
"num_pred": 1000,
|
321 |
+
"num_data": 1000
|
322 |
+
},
|
323 |
+
"A-OKVQA": {
|
324 |
+
"hit@1": 0.6,
|
325 |
+
"hit@5": 0.885,
|
326 |
+
"hit@10": 0.941,
|
327 |
+
"ndcg_linear@1": 0.6,
|
328 |
+
"ndcg_linear@5": 0.7567001853131614,
|
329 |
+
"ndcg_linear@10": 0.774920654838386,
|
330 |
+
"ndcg_exponential@1": 0.6,
|
331 |
+
"ndcg_exponential@5": 0.7567001853131614,
|
332 |
+
"ndcg_exponential@10": 0.774920654838386,
|
333 |
+
"precision@1": 0.6,
|
334 |
+
"precision@5": 0.177,
|
335 |
+
"precision@10": 0.09410000000000002,
|
336 |
+
"recall@1": 0.6,
|
337 |
+
"recall@5": 0.885,
|
338 |
+
"recall@10": 0.941,
|
339 |
+
"f1@1": 0.6,
|
340 |
+
"f1@5": 0.295,
|
341 |
+
"f1@10": 0.17109090909090907,
|
342 |
+
"map@1": 0.6,
|
343 |
+
"map@5": 0.7134833333333334,
|
344 |
+
"map@10": 0.7210642857142857,
|
345 |
+
"mrr@1": 0.6,
|
346 |
+
"mrr@5": 0.7134833333333334,
|
347 |
+
"mrr@10": 0.7210642857142857,
|
348 |
+
"num_pred": 1000,
|
349 |
+
"num_data": 1000
|
350 |
+
},
|
351 |
+
"DocVQA": {
|
352 |
+
"hit@1": 0.947,
|
353 |
+
"hit@5": 0.995,
|
354 |
+
"hit@10": 0.996,
|
355 |
+
"ndcg_linear@1": 0.947,
|
356 |
+
"ndcg_linear@5": 0.9755232833635987,
|
357 |
+
"ndcg_linear@10": 0.9758794905507068,
|
358 |
+
"ndcg_exponential@1": 0.947,
|
359 |
+
"ndcg_exponential@5": 0.9755232833635987,
|
360 |
+
"ndcg_exponential@10": 0.9758794905507068,
|
361 |
+
"precision@1": 0.947,
|
362 |
+
"precision@5": 0.19900000000000004,
|
363 |
+
"precision@10": 0.09960000000000002,
|
364 |
+
"recall@1": 0.947,
|
365 |
+
"recall@5": 0.995,
|
366 |
+
"recall@10": 0.996,
|
367 |
+
"f1@1": 0.947,
|
368 |
+
"f1@5": 0.3316666666666666,
|
369 |
+
"f1@10": 0.18109090909090905,
|
370 |
+
"map@1": 0.947,
|
371 |
+
"map@5": 0.9687833333333334,
|
372 |
+
"map@10": 0.9689500000000001,
|
373 |
+
"mrr@1": 0.947,
|
374 |
+
"mrr@5": 0.9687833333333334,
|
375 |
+
"mrr@10": 0.9689500000000001,
|
376 |
+
"num_pred": 1000,
|
377 |
+
"num_data": 1000
|
378 |
+
},
|
379 |
+
"InfographicsVQA": {
|
380 |
+
"hit@1": 0.736,
|
381 |
+
"hit@5": 0.906,
|
382 |
+
"hit@10": 0.932,
|
383 |
+
"ndcg_linear@1": 0.736,
|
384 |
+
"ndcg_linear@5": 0.8277407513883303,
|
385 |
+
"ndcg_linear@10": 0.8362488999302439,
|
386 |
+
"ndcg_exponential@1": 0.736,
|
387 |
+
"ndcg_exponential@5": 0.8277407513883303,
|
388 |
+
"ndcg_exponential@10": 0.8362488999302439,
|
389 |
+
"precision@1": 0.736,
|
390 |
+
"precision@5": 0.18120000000000003,
|
391 |
+
"precision@10": 0.09320000000000002,
|
392 |
+
"recall@1": 0.736,
|
393 |
+
"recall@5": 0.906,
|
394 |
+
"recall@10": 0.932,
|
395 |
+
"f1@1": 0.736,
|
396 |
+
"f1@5": 0.302,
|
397 |
+
"f1@10": 0.16945454545454544,
|
398 |
+
"map@1": 0.736,
|
399 |
+
"map@5": 0.8015666666666666,
|
400 |
+
"map@10": 0.805140873015873,
|
401 |
+
"mrr@1": 0.736,
|
402 |
+
"mrr@5": 0.8015666666666666,
|
403 |
+
"mrr@10": 0.805140873015873,
|
404 |
+
"num_pred": 1000,
|
405 |
+
"num_data": 1000
|
406 |
+
},
|
407 |
+
"ChartQA": {
|
408 |
+
"hit@1": 0.652,
|
409 |
+
"hit@5": 0.81,
|
410 |
+
"hit@10": 0.873,
|
411 |
+
"ndcg_linear@1": 0.652,
|
412 |
+
"ndcg_linear@5": 0.7383237284140184,
|
413 |
+
"ndcg_linear@10": 0.758789100394747,
|
414 |
+
"ndcg_exponential@1": 0.652,
|
415 |
+
"ndcg_exponential@5": 0.7383237284140184,
|
416 |
+
"ndcg_exponential@10": 0.758789100394747,
|
417 |
+
"precision@1": 0.652,
|
418 |
+
"precision@5": 0.162,
|
419 |
+
"precision@10": 0.08730000000000002,
|
420 |
+
"recall@1": 0.652,
|
421 |
+
"recall@5": 0.81,
|
422 |
+
"recall@10": 0.873,
|
423 |
+
"f1@1": 0.652,
|
424 |
+
"f1@5": 0.27,
|
425 |
+
"f1@10": 0.15872727272727274,
|
426 |
+
"map@1": 0.652,
|
427 |
+
"map@5": 0.7142833333333333,
|
428 |
+
"map@10": 0.7227880952380953,
|
429 |
+
"mrr@1": 0.652,
|
430 |
+
"mrr@5": 0.7142833333333333,
|
431 |
+
"mrr@10": 0.7227880952380953,
|
432 |
+
"num_pred": 1000,
|
433 |
+
"num_data": 1000
|
434 |
+
},
|
435 |
+
"Visual7W": {
|
436 |
+
"hit@1": 0.584,
|
437 |
+
"hit@5": 0.904,
|
438 |
+
"hit@10": 0.951,
|
439 |
+
"ndcg_linear@1": 0.584,
|
440 |
+
"ndcg_linear@5": 0.7607038779643807,
|
441 |
+
"ndcg_linear@10": 0.7762948323430009,
|
442 |
+
"ndcg_exponential@1": 0.584,
|
443 |
+
"ndcg_exponential@5": 0.7607038779643807,
|
444 |
+
"ndcg_exponential@10": 0.7762948323430009,
|
445 |
+
"precision@1": 0.584,
|
446 |
+
"precision@5": 0.18080000000000002,
|
447 |
+
"precision@10": 0.09510000000000002,
|
448 |
+
"recall@1": 0.584,
|
449 |
+
"recall@5": 0.904,
|
450 |
+
"recall@10": 0.951,
|
451 |
+
"f1@1": 0.584,
|
452 |
+
"f1@5": 0.3013333333333334,
|
453 |
+
"f1@10": 0.1729090909090909,
|
454 |
+
"map@1": 0.584,
|
455 |
+
"map@5": 0.7124833333333334,
|
456 |
+
"map@10": 0.7191464285714286,
|
457 |
+
"mrr@1": 0.584,
|
458 |
+
"mrr@5": 0.7124833333333334,
|
459 |
+
"mrr@10": 0.7191464285714286,
|
460 |
+
"num_pred": 1000,
|
461 |
+
"num_data": 1000
|
462 |
+
},
|
463 |
+
"ScienceQA": {
|
464 |
+
"hit@1": 0.499,
|
465 |
+
"hit@5": 0.809,
|
466 |
+
"hit@10": 0.911,
|
467 |
+
"ndcg_linear@1": 0.499,
|
468 |
+
"ndcg_linear@5": 0.6739528358410788,
|
469 |
+
"ndcg_linear@10": 0.7062005471589817,
|
470 |
+
"ndcg_exponential@1": 0.499,
|
471 |
+
"ndcg_exponential@5": 0.6739528358410788,
|
472 |
+
"ndcg_exponential@10": 0.7062005471589817,
|
473 |
+
"precision@1": 0.499,
|
474 |
+
"precision@5": 0.1618,
|
475 |
+
"precision@10": 0.09110000000000001,
|
476 |
+
"recall@1": 0.499,
|
477 |
+
"recall@5": 0.809,
|
478 |
+
"recall@10": 0.911,
|
479 |
+
"f1@1": 0.499,
|
480 |
+
"f1@5": 0.26966666666666667,
|
481 |
+
"f1@10": 0.16563636363636364,
|
482 |
+
"map@1": 0.499,
|
483 |
+
"map@5": 0.6281666666666667,
|
484 |
+
"map@10": 0.641040873015873,
|
485 |
+
"mrr@1": 0.499,
|
486 |
+
"mrr@5": 0.6281666666666667,
|
487 |
+
"mrr@10": 0.641040873015873,
|
488 |
+
"num_pred": 1000,
|
489 |
+
"num_data": 1000
|
490 |
+
},
|
491 |
+
"VizWiz": {
|
492 |
+
"hit@1": 0.566,
|
493 |
+
"hit@5": 0.719,
|
494 |
+
"hit@10": 0.751,
|
495 |
+
"ndcg_linear@1": 0.566,
|
496 |
+
"ndcg_linear@5": 0.6514422712364567,
|
497 |
+
"ndcg_linear@10": 0.6616436437103389,
|
498 |
+
"ndcg_exponential@1": 0.566,
|
499 |
+
"ndcg_exponential@5": 0.6514422712364567,
|
500 |
+
"ndcg_exponential@10": 0.6616436437103389,
|
501 |
+
"precision@1": 0.566,
|
502 |
+
"precision@5": 0.14379999999999998,
|
503 |
+
"precision@10": 0.07510000000000001,
|
504 |
+
"recall@1": 0.566,
|
505 |
+
"recall@5": 0.719,
|
506 |
+
"recall@10": 0.751,
|
507 |
+
"f1@1": 0.566,
|
508 |
+
"f1@5": 0.23966666666666672,
|
509 |
+
"f1@10": 0.13654545454545455,
|
510 |
+
"map@1": 0.566,
|
511 |
+
"map@5": 0.6285833333333333,
|
512 |
+
"map@10": 0.6327095238095238,
|
513 |
+
"mrr@1": 0.566,
|
514 |
+
"mrr@5": 0.6285833333333333,
|
515 |
+
"mrr@10": 0.6327095238095238,
|
516 |
+
"num_pred": 1000,
|
517 |
+
"num_data": 1000
|
518 |
+
},
|
519 |
+
"GQA": {
|
520 |
+
"hit@1": 0.799,
|
521 |
+
"hit@5": 0.946,
|
522 |
+
"hit@10": 0.972,
|
523 |
+
"ndcg_linear@1": 0.799,
|
524 |
+
"ndcg_linear@5": 0.8811134365876296,
|
525 |
+
"ndcg_linear@10": 0.8897748874138558,
|
526 |
+
"ndcg_exponential@1": 0.799,
|
527 |
+
"ndcg_exponential@5": 0.8811134365876296,
|
528 |
+
"ndcg_exponential@10": 0.8897748874138558,
|
529 |
+
"precision@1": 0.799,
|
530 |
+
"precision@5": 0.1892,
|
531 |
+
"precision@10": 0.09720000000000002,
|
532 |
+
"recall@1": 0.799,
|
533 |
+
"recall@5": 0.946,
|
534 |
+
"recall@10": 0.972,
|
535 |
+
"f1@1": 0.799,
|
536 |
+
"f1@5": 0.31533333333333335,
|
537 |
+
"f1@10": 0.17672727272727268,
|
538 |
+
"map@1": 0.799,
|
539 |
+
"map@5": 0.8592000000000001,
|
540 |
+
"map@10": 0.8629210317460316,
|
541 |
+
"mrr@1": 0.799,
|
542 |
+
"mrr@5": 0.8592000000000001,
|
543 |
+
"mrr@10": 0.8629210317460316,
|
544 |
+
"num_pred": 1000,
|
545 |
+
"num_data": 1000
|
546 |
+
},
|
547 |
+
"TextVQA": {
|
548 |
+
"hit@1": 0.869,
|
549 |
+
"hit@5": 0.926,
|
550 |
+
"hit@10": 0.939,
|
551 |
+
"ndcg_linear@1": 0.869,
|
552 |
+
"ndcg_linear@5": 0.9007951815016322,
|
553 |
+
"ndcg_linear@10": 0.9049302047486061,
|
554 |
+
"ndcg_exponential@1": 0.869,
|
555 |
+
"ndcg_exponential@5": 0.9007951815016322,
|
556 |
+
"ndcg_exponential@10": 0.9049302047486061,
|
557 |
+
"precision@1": 0.869,
|
558 |
+
"precision@5": 0.18520000000000006,
|
559 |
+
"precision@10": 0.09390000000000001,
|
560 |
+
"recall@1": 0.869,
|
561 |
+
"recall@5": 0.926,
|
562 |
+
"recall@10": 0.939,
|
563 |
+
"f1@1": 0.869,
|
564 |
+
"f1@5": 0.3086666666666667,
|
565 |
+
"f1@10": 0.1707272727272727,
|
566 |
+
"map@1": 0.869,
|
567 |
+
"map@5": 0.8922833333333333,
|
568 |
+
"map@10": 0.8939476190476191,
|
569 |
+
"mrr@1": 0.869,
|
570 |
+
"mrr@5": 0.8922833333333333,
|
571 |
+
"mrr@10": 0.8939476190476191,
|
572 |
+
"num_pred": 1000,
|
573 |
+
"num_data": 1000
|
574 |
+
},
|
575 |
+
"VisDial": {
|
576 |
+
"hit@1": 0.818,
|
577 |
+
"hit@5": 0.96,
|
578 |
+
"hit@10": 0.981,
|
579 |
+
"ndcg_linear@1": 0.818,
|
580 |
+
"ndcg_linear@5": 0.8981579586925184,
|
581 |
+
"ndcg_linear@10": 0.9050024514275745,
|
582 |
+
"ndcg_exponential@1": 0.818,
|
583 |
+
"ndcg_exponential@5": 0.8981579586925184,
|
584 |
+
"ndcg_exponential@10": 0.9050024514275745,
|
585 |
+
"precision@1": 0.818,
|
586 |
+
"precision@5": 0.192,
|
587 |
+
"precision@10": 0.09810000000000002,
|
588 |
+
"recall@1": 0.818,
|
589 |
+
"recall@5": 0.96,
|
590 |
+
"recall@10": 0.981,
|
591 |
+
"f1@1": 0.818,
|
592 |
+
"f1@5": 0.32,
|
593 |
+
"f1@10": 0.17836363636363634,
|
594 |
+
"map@1": 0.818,
|
595 |
+
"map@5": 0.8771666666666667,
|
596 |
+
"map@10": 0.8800242063492063,
|
597 |
+
"mrr@1": 0.818,
|
598 |
+
"mrr@5": 0.8771666666666667,
|
599 |
+
"mrr@10": 0.8800242063492063,
|
600 |
+
"num_pred": 1000,
|
601 |
+
"num_data": 1000
|
602 |
+
},
|
603 |
+
"CIRR": {
|
604 |
+
"hit@1": 0.552,
|
605 |
+
"hit@5": 0.911,
|
606 |
+
"hit@10": 0.955,
|
607 |
+
"ndcg_linear@1": 0.552,
|
608 |
+
"ndcg_linear@5": 0.7544132207910468,
|
609 |
+
"ndcg_linear@10": 0.7687461843165859,
|
610 |
+
"ndcg_exponential@1": 0.552,
|
611 |
+
"ndcg_exponential@5": 0.7544132207910468,
|
612 |
+
"ndcg_exponential@10": 0.7687461843165859,
|
613 |
+
"precision@1": 0.552,
|
614 |
+
"precision@5": 0.18220000000000003,
|
615 |
+
"precision@10": 0.09550000000000002,
|
616 |
+
"recall@1": 0.552,
|
617 |
+
"recall@5": 0.911,
|
618 |
+
"recall@10": 0.955,
|
619 |
+
"f1@1": 0.552,
|
620 |
+
"f1@5": 0.30366666666666664,
|
621 |
+
"f1@10": 0.17363636363636362,
|
622 |
+
"map@1": 0.552,
|
623 |
+
"map@5": 0.7012666666666667,
|
624 |
+
"map@10": 0.7072380952380952,
|
625 |
+
"mrr@1": 0.552,
|
626 |
+
"mrr@5": 0.7012666666666667,
|
627 |
+
"mrr@10": 0.7072380952380952,
|
628 |
+
"num_pred": 1000,
|
629 |
+
"num_data": 1000
|
630 |
+
},
|
631 |
+
"VisualNews_t2i": {
|
632 |
+
"hit@1": 0.801,
|
633 |
+
"hit@5": 0.907,
|
634 |
+
"hit@10": 0.938,
|
635 |
+
"ndcg_linear@1": 0.801,
|
636 |
+
"ndcg_linear@5": 0.8594919255925174,
|
637 |
+
"ndcg_linear@10": 0.8692591058077485,
|
638 |
+
"ndcg_exponential@1": 0.801,
|
639 |
+
"ndcg_exponential@5": 0.8594919255925174,
|
640 |
+
"ndcg_exponential@10": 0.8692591058077485,
|
641 |
+
"precision@1": 0.801,
|
642 |
+
"precision@5": 0.18140000000000003,
|
643 |
+
"precision@10": 0.09380000000000001,
|
644 |
+
"recall@1": 0.801,
|
645 |
+
"recall@5": 0.907,
|
646 |
+
"recall@10": 0.938,
|
647 |
+
"f1@1": 0.801,
|
648 |
+
"f1@5": 0.3023333333333334,
|
649 |
+
"f1@10": 0.17054545454545453,
|
650 |
+
"map@1": 0.801,
|
651 |
+
"map@5": 0.8435,
|
652 |
+
"map@10": 0.8473805555555555,
|
653 |
+
"mrr@1": 0.801,
|
654 |
+
"mrr@5": 0.8435,
|
655 |
+
"mrr@10": 0.8473805555555555,
|
656 |
+
"num_pred": 1000,
|
657 |
+
"num_data": 1000
|
658 |
+
},
|
659 |
+
"VisualNews_i2t": {
|
660 |
+
"hit@1": 0.843,
|
661 |
+
"hit@5": 0.936,
|
662 |
+
"hit@10": 0.953,
|
663 |
+
"ndcg_linear@1": 0.843,
|
664 |
+
"ndcg_linear@5": 0.8943970763350075,
|
665 |
+
"ndcg_linear@10": 0.8998863523941975,
|
666 |
+
"ndcg_exponential@1": 0.843,
|
667 |
+
"ndcg_exponential@5": 0.8943970763350075,
|
668 |
+
"ndcg_exponential@10": 0.8998863523941975,
|
669 |
+
"precision@1": 0.843,
|
670 |
+
"precision@5": 0.18720000000000003,
|
671 |
+
"precision@10": 0.09530000000000001,
|
672 |
+
"recall@1": 0.843,
|
673 |
+
"recall@5": 0.936,
|
674 |
+
"recall@10": 0.953,
|
675 |
+
"f1@1": 0.843,
|
676 |
+
"f1@5": 0.312,
|
677 |
+
"f1@10": 0.17327272727272724,
|
678 |
+
"map@1": 0.843,
|
679 |
+
"map@5": 0.8803666666666666,
|
680 |
+
"map@10": 0.8826269841269841,
|
681 |
+
"mrr@1": 0.843,
|
682 |
+
"mrr@5": 0.8803666666666666,
|
683 |
+
"mrr@10": 0.8826269841269841,
|
684 |
+
"num_pred": 1000,
|
685 |
+
"num_data": 1000
|
686 |
+
},
|
687 |
+
"MSCOCO_t2i": {
|
688 |
+
"hit@1": 0.793,
|
689 |
+
"hit@5": 0.949,
|
690 |
+
"hit@10": 0.978,
|
691 |
+
"ndcg_linear@1": 0.793,
|
692 |
+
"ndcg_linear@5": 0.8803368672984685,
|
693 |
+
"ndcg_linear@10": 0.8896818613565582,
|
694 |
+
"ndcg_exponential@1": 0.793,
|
695 |
+
"ndcg_exponential@5": 0.8803368672984685,
|
696 |
+
"ndcg_exponential@10": 0.8896818613565582,
|
697 |
+
"precision@1": 0.793,
|
698 |
+
"precision@5": 0.18980000000000005,
|
699 |
+
"precision@10": 0.09780000000000001,
|
700 |
+
"recall@1": 0.793,
|
701 |
+
"recall@5": 0.949,
|
702 |
+
"recall@10": 0.978,
|
703 |
+
"f1@1": 0.793,
|
704 |
+
"f1@5": 0.31633333333333336,
|
705 |
+
"f1@10": 0.17781818181818182,
|
706 |
+
"map@1": 0.793,
|
707 |
+
"map@5": 0.8571333333333333,
|
708 |
+
"map@10": 0.860975,
|
709 |
+
"mrr@1": 0.793,
|
710 |
+
"mrr@5": 0.8571333333333333,
|
711 |
+
"mrr@10": 0.860975,
|
712 |
+
"num_pred": 1000,
|
713 |
+
"num_data": 1000
|
714 |
+
},
|
715 |
+
"MSCOCO_i2t": {
|
716 |
+
"hit@1": 0.721,
|
717 |
+
"hit@5": 0.943,
|
718 |
+
"hit@10": 0.98,
|
719 |
+
"ndcg_linear@1": 0.721,
|
720 |
+
"ndcg_linear@5": 0.8402135232694316,
|
721 |
+
"ndcg_linear@10": 0.8526142772096339,
|
722 |
+
"ndcg_exponential@1": 0.721,
|
723 |
+
"ndcg_exponential@5": 0.8402135232694316,
|
724 |
+
"ndcg_exponential@10": 0.8526142772096339,
|
725 |
+
"precision@1": 0.721,
|
726 |
+
"precision@5": 0.18860000000000002,
|
727 |
+
"precision@10": 0.09800000000000002,
|
728 |
+
"recall@1": 0.721,
|
729 |
+
"recall@5": 0.943,
|
730 |
+
"recall@10": 0.98,
|
731 |
+
"f1@1": 0.721,
|
732 |
+
"f1@5": 0.3143333333333333,
|
733 |
+
"f1@10": 0.17818181818181816,
|
734 |
+
"map@1": 0.721,
|
735 |
+
"map@5": 0.8058666666666666,
|
736 |
+
"map@10": 0.811238492063492,
|
737 |
+
"mrr@1": 0.721,
|
738 |
+
"mrr@5": 0.8058666666666666,
|
739 |
+
"mrr@10": 0.811238492063492,
|
740 |
+
"num_pred": 1000,
|
741 |
+
"num_data": 1000
|
742 |
+
},
|
743 |
+
"NIGHTS": {
|
744 |
+
"hit@1": 0.662,
|
745 |
+
"hit@5": 0.977,
|
746 |
+
"hit@10": 0.997,
|
747 |
+
"ndcg_linear@1": 0.662,
|
748 |
+
"ndcg_linear@5": 0.8428332649702934,
|
749 |
+
"ndcg_linear@10": 0.8493732941342598,
|
750 |
+
"ndcg_exponential@1": 0.662,
|
751 |
+
"ndcg_exponential@5": 0.8428332649702934,
|
752 |
+
"ndcg_exponential@10": 0.8493732941342598,
|
753 |
+
"precision@1": 0.662,
|
754 |
+
"precision@5": 0.19540000000000005,
|
755 |
+
"precision@10": 0.09970000000000001,
|
756 |
+
"recall@1": 0.662,
|
757 |
+
"recall@5": 0.977,
|
758 |
+
"recall@10": 0.997,
|
759 |
+
"f1@1": 0.662,
|
760 |
+
"f1@5": 0.3256666666666666,
|
761 |
+
"f1@10": 0.18127272727272725,
|
762 |
+
"map@1": 0.662,
|
763 |
+
"map@5": 0.797,
|
764 |
+
"map@10": 0.7997424603174603,
|
765 |
+
"mrr@1": 0.662,
|
766 |
+
"mrr@5": 0.797,
|
767 |
+
"mrr@10": 0.7997424603174603,
|
768 |
+
"num_pred": 1000,
|
769 |
+
"num_data": 1000
|
770 |
+
},
|
771 |
+
"WebQA": {
|
772 |
+
"hit@1": 0.919,
|
773 |
+
"hit@5": 0.994,
|
774 |
+
"hit@10": 0.998,
|
775 |
+
"ndcg_linear@1": 0.919,
|
776 |
+
"ndcg_linear@5": 0.9619522053693657,
|
777 |
+
"ndcg_linear@10": 0.963298983072579,
|
778 |
+
"ndcg_exponential@1": 0.919,
|
779 |
+
"ndcg_exponential@5": 0.9619522053693657,
|
780 |
+
"ndcg_exponential@10": 0.963298983072579,
|
781 |
+
"precision@1": 0.919,
|
782 |
+
"precision@5": 0.1988,
|
783 |
+
"precision@10": 0.09980000000000001,
|
784 |
+
"recall@1": 0.919,
|
785 |
+
"recall@5": 0.994,
|
786 |
+
"recall@10": 0.998,
|
787 |
+
"f1@1": 0.919,
|
788 |
+
"f1@5": 0.3313333333333333,
|
789 |
+
"f1@10": 0.18145454545454545,
|
790 |
+
"map@1": 0.919,
|
791 |
+
"map@5": 0.9510166666666666,
|
792 |
+
"map@10": 0.9516039682539683,
|
793 |
+
"mrr@1": 0.919,
|
794 |
+
"mrr@5": 0.9510166666666666,
|
795 |
+
"mrr@10": 0.9516039682539683,
|
796 |
+
"num_pred": 1000,
|
797 |
+
"num_data": 1000
|
798 |
+
},
|
799 |
+
"FashionIQ": {
|
800 |
+
"hit@1": 0.243,
|
801 |
+
"hit@5": 0.511,
|
802 |
+
"hit@10": 0.592,
|
803 |
+
"ndcg_linear@1": 0.243,
|
804 |
+
"ndcg_linear@5": 0.38383730216588574,
|
805 |
+
"ndcg_linear@10": 0.41007610225616226,
|
806 |
+
"ndcg_exponential@1": 0.243,
|
807 |
+
"ndcg_exponential@5": 0.38383730216588574,
|
808 |
+
"ndcg_exponential@10": 0.41007610225616226,
|
809 |
+
"precision@1": 0.243,
|
810 |
+
"precision@5": 0.10219999999999999,
|
811 |
+
"precision@10": 0.05919999999999999,
|
812 |
+
"recall@1": 0.243,
|
813 |
+
"recall@5": 0.511,
|
814 |
+
"recall@10": 0.592,
|
815 |
+
"f1@1": 0.243,
|
816 |
+
"f1@5": 0.17033333333333336,
|
817 |
+
"f1@10": 0.10763636363636366,
|
818 |
+
"map@1": 0.243,
|
819 |
+
"map@5": 0.3416666666666666,
|
820 |
+
"map@10": 0.3525230158730159,
|
821 |
+
"mrr@1": 0.243,
|
822 |
+
"mrr@5": 0.3416666666666666,
|
823 |
+
"mrr@10": 0.3525230158730159,
|
824 |
+
"num_pred": 1000,
|
825 |
+
"num_data": 1000
|
826 |
+
},
|
827 |
+
"Wiki-SS-NQ": {
|
828 |
+
"hit@1": 0.743,
|
829 |
+
"hit@5": 0.909,
|
830 |
+
"hit@10": 0.942,
|
831 |
+
"ndcg_linear@1": 0.743,
|
832 |
+
"ndcg_linear@5": 0.836321433713043,
|
833 |
+
"ndcg_linear@10": 0.8472817749175067,
|
834 |
+
"ndcg_exponential@1": 0.743,
|
835 |
+
"ndcg_exponential@5": 0.836321433713043,
|
836 |
+
"ndcg_exponential@10": 0.8472817749175067,
|
837 |
+
"precision@1": 0.743,
|
838 |
+
"precision@5": 0.18180000000000002,
|
839 |
+
"precision@10": 0.09420000000000002,
|
840 |
+
"recall@1": 0.743,
|
841 |
+
"recall@5": 0.909,
|
842 |
+
"recall@10": 0.942,
|
843 |
+
"f1@1": 0.743,
|
844 |
+
"f1@5": 0.303,
|
845 |
+
"f1@10": 0.17127272727272724,
|
846 |
+
"map@1": 0.743,
|
847 |
+
"map@5": 0.81165,
|
848 |
+
"map@10": 0.8163456349206349,
|
849 |
+
"mrr@1": 0.743,
|
850 |
+
"mrr@5": 0.81165,
|
851 |
+
"mrr@10": 0.8163456349206349,
|
852 |
+
"num_pred": 1000,
|
853 |
+
"num_data": 1000
|
854 |
+
},
|
855 |
+
"OVEN": {
|
856 |
+
"hit@1": 0.732,
|
857 |
+
"hit@5": 0.88,
|
858 |
+
"hit@10": 0.925,
|
859 |
+
"ndcg_linear@1": 0.732,
|
860 |
+
"ndcg_linear@5": 0.813023413986076,
|
861 |
+
"ndcg_linear@10": 0.8277770061315273,
|
862 |
+
"ndcg_exponential@1": 0.732,
|
863 |
+
"ndcg_exponential@5": 0.813023413986076,
|
864 |
+
"ndcg_exponential@10": 0.8277770061315273,
|
865 |
+
"precision@1": 0.732,
|
866 |
+
"precision@5": 0.176,
|
867 |
+
"precision@10": 0.0925,
|
868 |
+
"recall@1": 0.732,
|
869 |
+
"recall@5": 0.88,
|
870 |
+
"recall@10": 0.925,
|
871 |
+
"f1@1": 0.732,
|
872 |
+
"f1@5": 0.2933333333333334,
|
873 |
+
"f1@10": 0.16818181818181818,
|
874 |
+
"map@1": 0.732,
|
875 |
+
"map@5": 0.7905333333333333,
|
876 |
+
"map@10": 0.796740476190476,
|
877 |
+
"mrr@1": 0.732,
|
878 |
+
"mrr@5": 0.7905333333333333,
|
879 |
+
"mrr@10": 0.796740476190476,
|
880 |
+
"num_pred": 1000,
|
881 |
+
"num_data": 1000
|
882 |
+
},
|
883 |
+
"EDIS": {
|
884 |
+
"hit@1": 0.944,
|
885 |
+
"hit@5": 0.997,
|
886 |
+
"hit@10": 1.0,
|
887 |
+
"ndcg_linear@1": 0.944,
|
888 |
+
"ndcg_linear@5": 0.9750516728538741,
|
889 |
+
"ndcg_linear@10": 0.9760124097440858,
|
890 |
+
"ndcg_exponential@1": 0.944,
|
891 |
+
"ndcg_exponential@5": 0.9750516728538741,
|
892 |
+
"ndcg_exponential@10": 0.9760124097440858,
|
893 |
+
"precision@1": 0.944,
|
894 |
+
"precision@5": 0.19940000000000002,
|
895 |
+
"precision@10": 0.10000000000000002,
|
896 |
+
"recall@1": 0.944,
|
897 |
+
"recall@5": 0.997,
|
898 |
+
"recall@10": 1.0,
|
899 |
+
"f1@1": 0.944,
|
900 |
+
"f1@5": 0.3323333333333333,
|
901 |
+
"f1@10": 0.18181818181818182,
|
902 |
+
"map@1": 0.944,
|
903 |
+
"map@5": 0.9675,
|
904 |
+
"map@10": 0.9678916666666667,
|
905 |
+
"mrr@1": 0.944,
|
906 |
+
"mrr@5": 0.9675,
|
907 |
+
"mrr@10": 0.9678916666666667,
|
908 |
+
"num_pred": 1000,
|
909 |
+
"num_data": 1000
|
910 |
+
},
|
911 |
+
"MSCOCO": {
|
912 |
+
"hit@1": 0.739,
|
913 |
+
"hit@5": 0.879,
|
914 |
+
"hit@10": 0.912,
|
915 |
+
"ndcg_linear@1": 0.739,
|
916 |
+
"ndcg_linear@5": 0.8170358283919806,
|
917 |
+
"ndcg_linear@10": 0.8278094286114062,
|
918 |
+
"ndcg_exponential@1": 0.739,
|
919 |
+
"ndcg_exponential@5": 0.8170358283919806,
|
920 |
+
"ndcg_exponential@10": 0.8278094286114062,
|
921 |
+
"precision@1": 0.739,
|
922 |
+
"precision@5": 0.1758,
|
923 |
+
"precision@10": 0.09120000000000002,
|
924 |
+
"recall@1": 0.739,
|
925 |
+
"recall@5": 0.879,
|
926 |
+
"recall@10": 0.912,
|
927 |
+
"f1@1": 0.739,
|
928 |
+
"f1@5": 0.293,
|
929 |
+
"f1@10": 0.1658181818181818,
|
930 |
+
"map@1": 0.739,
|
931 |
+
"map@5": 0.7961166666666667,
|
932 |
+
"map@10": 0.8006210317460317,
|
933 |
+
"mrr@1": 0.739,
|
934 |
+
"mrr@5": 0.7961166666666667,
|
935 |
+
"mrr@10": 0.8006210317460317,
|
936 |
+
"num_pred": 1000,
|
937 |
+
"num_data": 1000
|
938 |
+
},
|
939 |
+
"RefCOCO": {
|
940 |
+
"hit@1": 0.904,
|
941 |
+
"hit@5": 0.995,
|
942 |
+
"hit@10": 0.997,
|
943 |
+
"ndcg_linear@1": 0.904,
|
944 |
+
"ndcg_linear@5": 0.9580666714637504,
|
945 |
+
"ndcg_linear@10": 0.9587154696738694,
|
946 |
+
"ndcg_exponential@1": 0.904,
|
947 |
+
"ndcg_exponential@5": 0.9580666714637504,
|
948 |
+
"ndcg_exponential@10": 0.9587154696738694,
|
949 |
+
"precision@1": 0.904,
|
950 |
+
"precision@5": 0.19900000000000004,
|
951 |
+
"precision@10": 0.09970000000000001,
|
952 |
+
"recall@1": 0.904,
|
953 |
+
"recall@5": 0.995,
|
954 |
+
"recall@10": 0.997,
|
955 |
+
"f1@1": 0.904,
|
956 |
+
"f1@5": 0.3316666666666666,
|
957 |
+
"f1@10": 0.18127272727272725,
|
958 |
+
"map@1": 0.904,
|
959 |
+
"map@5": 0.9452833333333333,
|
960 |
+
"map@10": 0.9455511904761904,
|
961 |
+
"mrr@1": 0.904,
|
962 |
+
"mrr@5": 0.9452833333333333,
|
963 |
+
"mrr@10": 0.9455511904761904,
|
964 |
+
"num_pred": 1000,
|
965 |
+
"num_data": 1000
|
966 |
+
},
|
967 |
+
"RefCOCO-Matching": {
|
968 |
+
"hit@1": 0.927,
|
969 |
+
"hit@5": 1.0,
|
970 |
+
"hit@10": 1.0,
|
971 |
+
"ndcg_linear@1": 0.927,
|
972 |
+
"ndcg_linear@5": 0.9748197315178593,
|
973 |
+
"ndcg_linear@10": 0.9748197315178593,
|
974 |
+
"ndcg_exponential@1": 0.927,
|
975 |
+
"ndcg_exponential@5": 0.9748197315178593,
|
976 |
+
"ndcg_exponential@10": 0.9748197315178593,
|
977 |
+
"precision@1": 0.927,
|
978 |
+
"precision@5": 0.20000000000000004,
|
979 |
+
"precision@10": 0.10000000000000002,
|
980 |
+
"recall@1": 0.927,
|
981 |
+
"recall@5": 1.0,
|
982 |
+
"recall@10": 1.0,
|
983 |
+
"f1@1": 0.927,
|
984 |
+
"f1@5": 0.3333333333333333,
|
985 |
+
"f1@10": 0.18181818181818182,
|
986 |
+
"map@1": 0.927,
|
987 |
+
"map@5": 0.9663333333333334,
|
988 |
+
"map@10": 0.9663333333333334,
|
989 |
+
"mrr@1": 0.927,
|
990 |
+
"mrr@5": 0.9633333333333334,
|
991 |
+
"mrr@10": 0.9633333333333334,
|
992 |
+
"num_pred": 1000,
|
993 |
+
"num_data": 1000
|
994 |
+
},
|
995 |
+
"Visual7W-Pointing": {
|
996 |
+
"hit@1": 0.916,
|
997 |
+
"hit@5": 0.971,
|
998 |
+
"hit@10": 0.985,
|
999 |
+
"ndcg_linear@1": 0.916,
|
1000 |
+
"ndcg_linear@5": 0.9457068095214094,
|
1001 |
+
"ndcg_linear@10": 0.9502811890192044,
|
1002 |
+
"ndcg_exponential@1": 0.916,
|
1003 |
+
"ndcg_exponential@5": 0.9457068095214094,
|
1004 |
+
"ndcg_exponential@10": 0.9502811890192044,
|
1005 |
+
"precision@1": 0.916,
|
1006 |
+
"precision@5": 0.19420000000000004,
|
1007 |
+
"precision@10": 0.0985,
|
1008 |
+
"recall@1": 0.916,
|
1009 |
+
"recall@5": 0.971,
|
1010 |
+
"recall@10": 0.985,
|
1011 |
+
"f1@1": 0.916,
|
1012 |
+
"f1@5": 0.32366666666666666,
|
1013 |
+
"f1@10": 0.17909090909090908,
|
1014 |
+
"map@1": 0.916,
|
1015 |
+
"map@5": 0.93725,
|
1016 |
+
"map@10": 0.939163492063492,
|
1017 |
+
"mrr@1": 0.916,
|
1018 |
+
"mrr@5": 0.93725,
|
1019 |
+
"mrr@10": 0.939163492063492,
|
1020 |
+
"num_pred": 1000,
|
1021 |
+
"num_data": 1000
|
1022 |
+
}
|
1023 |
+
},
|
1024 |
+
"visdoc": {
|
1025 |
+
"ViDoRe_arxivqa": {
|
1026 |
+
"hit@1": 0.724,
|
1027 |
+
"hit@5": 0.832,
|
1028 |
+
"hit@10": 0.87,
|
1029 |
+
"ndcg_linear@1": 0.724,
|
1030 |
+
"ndcg_linear@5": 0.7816980877667238,
|
1031 |
+
"ndcg_linear@10": 0.794154083491937,
|
1032 |
+
"ndcg_exponential@1": 0.724,
|
1033 |
+
"ndcg_exponential@5": 0.7816980877667238,
|
1034 |
+
"ndcg_exponential@10": 0.794154083491937,
|
1035 |
+
"precision@1": 0.724,
|
1036 |
+
"precision@5": 0.16639999999999996,
|
1037 |
+
"precision@10": 0.087,
|
1038 |
+
"recall@1": 0.724,
|
1039 |
+
"recall@5": 0.832,
|
1040 |
+
"recall@10": 0.87,
|
1041 |
+
"f1@1": 0.724,
|
1042 |
+
"f1@5": 0.2773333333333334,
|
1043 |
+
"f1@10": 0.15818181818181817,
|
1044 |
+
"map@1": 0.724,
|
1045 |
+
"map@5": 0.765,
|
1046 |
+
"map@10": 0.7702428571428571,
|
1047 |
+
"mrr@1": 0.724,
|
1048 |
+
"mrr@5": 0.765,
|
1049 |
+
"mrr@10": 0.7702428571428571,
|
1050 |
+
"num_pred": 500,
|
1051 |
+
"num_data": 500
|
1052 |
+
},
|
1053 |
+
"ViDoRe_docvqa": {
|
1054 |
+
"hit@1": 0.4035476718403548,
|
1055 |
+
"hit@5": 0.5809312638580931,
|
1056 |
+
"hit@10": 0.656319290465632,
|
1057 |
+
"ndcg_linear@1": 0.4035476718403548,
|
1058 |
+
"ndcg_linear@5": 0.49108570677106456,
|
1059 |
+
"ndcg_linear@10": 0.5147397758959128,
|
1060 |
+
"ndcg_exponential@1": 0.4035476718403548,
|
1061 |
+
"ndcg_exponential@5": 0.49108570677106456,
|
1062 |
+
"ndcg_exponential@10": 0.5147397758959128,
|
1063 |
+
"precision@1": 0.4035476718403548,
|
1064 |
+
"precision@5": 0.11707317073170731,
|
1065 |
+
"precision@10": 0.06651884700665188,
|
1066 |
+
"recall@1": 0.3976164079822616,
|
1067 |
+
"recall@5": 0.5727827050997782,
|
1068 |
+
"recall@10": 0.644660014781966,
|
1069 |
+
"f1@1": 0.39886671593988665,
|
1070 |
+
"f1@5": 0.19345167028093863,
|
1071 |
+
"f1@10": 0.1199606503375905,
|
1072 |
+
"map@1": 0.4035476718403548,
|
1073 |
+
"map@5": 0.4620349839862035,
|
1074 |
+
"map@10": 0.4718157181571816,
|
1075 |
+
"mrr@1": 0.4035476718403548,
|
1076 |
+
"mrr@5": 0.46855136733185515,
|
1077 |
+
"mrr@10": 0.47878523915109283,
|
1078 |
+
"num_pred": 451,
|
1079 |
+
"num_data": 451
|
1080 |
+
},
|
1081 |
+
"ViDoRe_infovqa": {
|
1082 |
+
"hit@1": 0.7995951417004049,
|
1083 |
+
"hit@5": 0.9230769230769231,
|
1084 |
+
"hit@10": 0.9473684210526315,
|
1085 |
+
"ndcg_linear@1": 0.7995951417004049,
|
1086 |
+
"ndcg_linear@5": 0.8658530746439195,
|
1087 |
+
"ndcg_linear@10": 0.8742677543682404,
|
1088 |
+
"ndcg_exponential@1": 0.7995951417004049,
|
1089 |
+
"ndcg_exponential@5": 0.8658530746439195,
|
1090 |
+
"ndcg_exponential@10": 0.8742677543682404,
|
1091 |
+
"precision@1": 0.7995951417004049,
|
1092 |
+
"precision@5": 0.18461538461538463,
|
1093 |
+
"precision@10": 0.09493927125506073,
|
1094 |
+
"recall@1": 0.7995951417004049,
|
1095 |
+
"recall@5": 0.9220647773279352,
|
1096 |
+
"recall@10": 0.9473684210526315,
|
1097 |
+
"f1@1": 0.7995951417004049,
|
1098 |
+
"f1@5": 0.3075959128590708,
|
1099 |
+
"f1@10": 0.17255551466077784,
|
1100 |
+
"map@1": 0.7995951417004049,
|
1101 |
+
"map@5": 0.8468960863697707,
|
1102 |
+
"map@10": 0.8505888117730224,
|
1103 |
+
"mrr@1": 0.7995951417004049,
|
1104 |
+
"mrr@5": 0.8472334682860998,
|
1105 |
+
"mrr@10": 0.8505888117730224,
|
1106 |
+
"num_pred": 494,
|
1107 |
+
"num_data": 494
|
1108 |
+
},
|
1109 |
+
"ViDoRe_tabfquad": {
|
1110 |
+
"hit@1": 0.8714285714285714,
|
1111 |
+
"hit@5": 0.95,
|
1112 |
+
"hit@10": 0.975,
|
1113 |
+
"ndcg_linear@1": 0.8714285714285714,
|
1114 |
+
"ndcg_linear@5": 0.9139664212357709,
|
1115 |
+
"ndcg_linear@10": 0.9218222423868873,
|
1116 |
+
"ndcg_exponential@1": 0.8714285714285714,
|
1117 |
+
"ndcg_exponential@5": 0.9139664212357709,
|
1118 |
+
"ndcg_exponential@10": 0.9218222423868873,
|
1119 |
+
"precision@1": 0.8714285714285714,
|
1120 |
+
"precision@5": 0.18999999999999997,
|
1121 |
+
"precision@10": 0.09749999999999999,
|
1122 |
+
"recall@1": 0.8714285714285714,
|
1123 |
+
"recall@5": 0.95,
|
1124 |
+
"recall@10": 0.975,
|
1125 |
+
"f1@1": 0.8714285714285714,
|
1126 |
+
"f1@5": 0.3166666666666667,
|
1127 |
+
"f1@10": 0.1772727272727273,
|
1128 |
+
"map@1": 0.8714285714285714,
|
1129 |
+
"map@5": 0.9019642857142858,
|
1130 |
+
"map@10": 0.9050736961451247,
|
1131 |
+
"mrr@1": 0.8714285714285714,
|
1132 |
+
"mrr@5": 0.9019642857142858,
|
1133 |
+
"mrr@10": 0.9050736961451247,
|
1134 |
+
"num_pred": 280,
|
1135 |
+
"num_data": 280
|
1136 |
+
},
|
1137 |
+
"ViDoRe_tatdqa": {
|
1138 |
+
"hit@1": 0.41433778857837184,
|
1139 |
+
"hit@5": 0.6834750911300121,
|
1140 |
+
"hit@10": 0.7885783718104495,
|
1141 |
+
"ndcg_linear@1": 0.41433778857837184,
|
1142 |
+
"ndcg_linear@5": 0.5558704694199323,
|
1143 |
+
"ndcg_linear@10": 0.5903675001014173,
|
1144 |
+
"ndcg_exponential@1": 0.41433778857837184,
|
1145 |
+
"ndcg_exponential@5": 0.5558704694199323,
|
1146 |
+
"ndcg_exponential@10": 0.5903675001014173,
|
1147 |
+
"precision@1": 0.41433778857837184,
|
1148 |
+
"precision@5": 0.13681652490886997,
|
1149 |
+
"precision@10": 0.0789793438639125,
|
1150 |
+
"recall@1": 0.413730255164034,
|
1151 |
+
"recall@5": 0.6825637910085055,
|
1152 |
+
"recall@10": 0.7879708383961118,
|
1153 |
+
"f1@1": 0.4139327663021466,
|
1154 |
+
"f1@5": 0.2278828907018458,
|
1155 |
+
"f1@10": 0.14354357671490117,
|
1156 |
+
"map@1": 0.41433778857837184,
|
1157 |
+
"map@5": 0.5136644390441474,
|
1158 |
+
"map@10": 0.5281519412139096,
|
1159 |
+
"mrr@1": 0.41433778857837184,
|
1160 |
+
"mrr@5": 0.5141454029971648,
|
1161 |
+
"mrr@10": 0.5285721518254932,
|
1162 |
+
"num_pred": 1646,
|
1163 |
+
"num_data": 1646
|
1164 |
+
},
|
1165 |
+
"ViDoRe_shiftproject": {
|
1166 |
+
"hit@1": 0.61,
|
1167 |
+
"hit@5": 0.89,
|
1168 |
+
"hit@10": 0.97,
|
1169 |
+
"ndcg_linear@1": 0.61,
|
1170 |
+
"ndcg_linear@5": 0.7617245745315876,
|
1171 |
+
"ndcg_linear@10": 0.7890774568114949,
|
1172 |
+
"ndcg_exponential@1": 0.61,
|
1173 |
+
"ndcg_exponential@5": 0.7617245745315876,
|
1174 |
+
"ndcg_exponential@10": 0.7890774568114949,
|
1175 |
+
"precision@1": 0.61,
|
1176 |
+
"precision@5": 0.17799999999999996,
|
1177 |
+
"precision@10": 0.09699999999999998,
|
1178 |
+
"recall@1": 0.61,
|
1179 |
+
"recall@5": 0.89,
|
1180 |
+
"recall@10": 0.97,
|
1181 |
+
"f1@1": 0.61,
|
1182 |
+
"f1@5": 0.2966666666666667,
|
1183 |
+
"f1@10": 0.17636363636363647,
|
1184 |
+
"map@1": 0.61,
|
1185 |
+
"map@5": 0.7188333333333334,
|
1186 |
+
"map@10": 0.7309761904761904,
|
1187 |
+
"mrr@1": 0.61,
|
1188 |
+
"mrr@5": 0.7188333333333334,
|
1189 |
+
"mrr@10": 0.7309761904761904,
|
1190 |
+
"num_pred": 100,
|
1191 |
+
"num_data": 100
|
1192 |
+
},
|
1193 |
+
"ViDoRe_syntheticDocQA_artificial_intelligence": {
|
1194 |
+
"hit@1": 0.8,
|
1195 |
+
"hit@5": 0.99,
|
1196 |
+
"hit@10": 1.0,
|
1197 |
+
"ndcg_linear@1": 0.8,
|
1198 |
+
"ndcg_linear@5": 0.9099357497170402,
|
1199 |
+
"ndcg_linear@10": 0.912826397980219,
|
1200 |
+
"ndcg_exponential@1": 0.8,
|
1201 |
+
"ndcg_exponential@5": 0.9099357497170402,
|
1202 |
+
"ndcg_exponential@10": 0.912826397980219,
|
1203 |
+
"precision@1": 0.8,
|
1204 |
+
"precision@5": 0.19799999999999998,
|
1205 |
+
"precision@10": 0.09999999999999998,
|
1206 |
+
"recall@1": 0.8,
|
1207 |
+
"recall@5": 0.99,
|
1208 |
+
"recall@10": 1.0,
|
1209 |
+
"f1@1": 0.8,
|
1210 |
+
"f1@5": 0.3300000000000001,
|
1211 |
+
"f1@10": 0.1818181818181819,
|
1212 |
+
"map@1": 0.8,
|
1213 |
+
"map@5": 0.8826666666666667,
|
1214 |
+
"map@10": 0.8836666666666666,
|
1215 |
+
"mrr@1": 0.8,
|
1216 |
+
"mrr@5": 0.8826666666666667,
|
1217 |
+
"mrr@10": 0.8836666666666666,
|
1218 |
+
"num_pred": 100,
|
1219 |
+
"num_data": 100
|
1220 |
+
},
|
1221 |
+
"ViDoRe_syntheticDocQA_energy": {
|
1222 |
+
"hit@1": 0.81,
|
1223 |
+
"hit@5": 0.93,
|
1224 |
+
"hit@10": 0.96,
|
1225 |
+
"ndcg_linear@1": 0.81,
|
1226 |
+
"ndcg_linear@5": 0.8753378444481007,
|
1227 |
+
"ndcg_linear@10": 0.8856166369581185,
|
1228 |
+
"ndcg_exponential@1": 0.81,
|
1229 |
+
"ndcg_exponential@5": 0.8753378444481007,
|
1230 |
+
"ndcg_exponential@10": 0.8856166369581185,
|
1231 |
+
"precision@1": 0.81,
|
1232 |
+
"precision@5": 0.18599999999999994,
|
1233 |
+
"precision@10": 0.09599999999999997,
|
1234 |
+
"recall@1": 0.81,
|
1235 |
+
"recall@5": 0.93,
|
1236 |
+
"recall@10": 0.96,
|
1237 |
+
"f1@1": 0.81,
|
1238 |
+
"f1@5": 0.31000000000000005,
|
1239 |
+
"f1@10": 0.17454545454545464,
|
1240 |
+
"map@1": 0.81,
|
1241 |
+
"map@5": 0.8569999999999999,
|
1242 |
+
"map@10": 0.8615833333333334,
|
1243 |
+
"mrr@1": 0.81,
|
1244 |
+
"mrr@5": 0.8569999999999999,
|
1245 |
+
"mrr@10": 0.8615833333333334,
|
1246 |
+
"num_pred": 100,
|
1247 |
+
"num_data": 100
|
1248 |
+
},
|
1249 |
+
"ViDoRe_syntheticDocQA_government_reports": {
|
1250 |
+
"hit@1": 0.83,
|
1251 |
+
"hit@5": 0.98,
|
1252 |
+
"hit@10": 0.99,
|
1253 |
+
"ndcg_linear@1": 0.83,
|
1254 |
+
"ndcg_linear@5": 0.9155750345909591,
|
1255 |
+
"ndcg_linear@10": 0.9187296833588163,
|
1256 |
+
"ndcg_exponential@1": 0.83,
|
1257 |
+
"ndcg_exponential@5": 0.9155750345909591,
|
1258 |
+
"ndcg_exponential@10": 0.9187296833588163,
|
1259 |
+
"precision@1": 0.83,
|
1260 |
+
"precision@5": 0.19599999999999998,
|
1261 |
+
"precision@10": 0.09899999999999999,
|
1262 |
+
"recall@1": 0.83,
|
1263 |
+
"recall@5": 0.98,
|
1264 |
+
"recall@10": 0.99,
|
1265 |
+
"f1@1": 0.83,
|
1266 |
+
"f1@5": 0.32666666666666677,
|
1267 |
+
"f1@10": 0.18000000000000008,
|
1268 |
+
"map@1": 0.83,
|
1269 |
+
"map@5": 0.8936666666666667,
|
1270 |
+
"map@10": 0.8949166666666667,
|
1271 |
+
"mrr@1": 0.83,
|
1272 |
+
"mrr@5": 0.8936666666666667,
|
1273 |
+
"mrr@10": 0.8949166666666667,
|
1274 |
+
"num_pred": 100,
|
1275 |
+
"num_data": 100
|
1276 |
+
},
|
1277 |
+
"ViDoRe_syntheticDocQA_healthcare_industry": {
|
1278 |
+
"hit@1": 0.85,
|
1279 |
+
"hit@5": 0.99,
|
1280 |
+
"hit@10": 1.0,
|
1281 |
+
"ndcg_linear@1": 0.85,
|
1282 |
+
"ndcg_linear@5": 0.9338868640816542,
|
1283 |
+
"ndcg_linear@10": 0.9372201974149877,
|
1284 |
+
"ndcg_exponential@1": 0.85,
|
1285 |
+
"ndcg_exponential@5": 0.9338868640816542,
|
1286 |
+
"ndcg_exponential@10": 0.9372201974149877,
|
1287 |
+
"precision@1": 0.85,
|
1288 |
+
"precision@5": 0.19799999999999998,
|
1289 |
+
"precision@10": 0.09999999999999998,
|
1290 |
+
"recall@1": 0.85,
|
1291 |
+
"recall@5": 0.99,
|
1292 |
+
"recall@10": 1.0,
|
1293 |
+
"f1@1": 0.85,
|
1294 |
+
"f1@5": 0.3300000000000001,
|
1295 |
+
"f1@10": 0.1818181818181819,
|
1296 |
+
"map@1": 0.85,
|
1297 |
+
"map@5": 0.9145,
|
1298 |
+
"map@10": 0.9159285714285714,
|
1299 |
+
"mrr@1": 0.85,
|
1300 |
+
"mrr@5": 0.9145,
|
1301 |
+
"mrr@10": 0.9159285714285714,
|
1302 |
+
"num_pred": 100,
|
1303 |
+
"num_data": 100
|
1304 |
+
},
|
1305 |
+
"ViDoRe_esg_reports_human_labeled_v2": {
|
1306 |
+
"hit@1": 0.6346153846153846,
|
1307 |
+
"hit@5": 0.9038461538461539,
|
1308 |
+
"hit@10": 0.9423076923076923,
|
1309 |
+
"ndcg_linear@1": 0.6121794871794872,
|
1310 |
+
"ndcg_linear@5": 0.662739973618026,
|
1311 |
+
"ndcg_linear@10": 0.6801813086670259,
|
1312 |
+
"ndcg_exponential@1": 0.6053113553113553,
|
1313 |
+
"ndcg_exponential@5": 0.6592882828242518,
|
1314 |
+
"ndcg_exponential@10": 0.6769628635131526,
|
1315 |
+
"precision@1": 0.6346153846153846,
|
1316 |
+
"precision@5": 0.25769230769230766,
|
1317 |
+
"precision@10": 0.15192307692307688,
|
1318 |
+
"recall@1": 0.4403846153846154,
|
1319 |
+
"recall@5": 0.7235431235431237,
|
1320 |
+
"recall@10": 0.7684232434232434,
|
1321 |
+
"f1@1": 0.4834530853761623,
|
1322 |
+
"f1@5": 0.34303453899042136,
|
1323 |
+
"f1@10": 0.2309966899616221,
|
1324 |
+
"map@1": 0.6346153846153846,
|
1325 |
+
"map@5": 0.6022649572649572,
|
1326 |
+
"map@10": 0.6106303418803418,
|
1327 |
+
"mrr@1": 0.6346153846153846,
|
1328 |
+
"mrr@5": 0.7346153846153847,
|
1329 |
+
"mrr@10": 0.7389423076923076,
|
1330 |
+
"num_pred": 52,
|
1331 |
+
"num_data": 52
|
1332 |
+
},
|
1333 |
+
"ViDoRe_biomedical_lectures_v2": {
|
1334 |
+
"hit@1": 0.5375,
|
1335 |
+
"hit@5": 0.83125,
|
1336 |
+
"hit@10": 0.90625,
|
1337 |
+
"ndcg_linear@1": 0.5375,
|
1338 |
+
"ndcg_linear@5": 0.5841363021080512,
|
1339 |
+
"ndcg_linear@10": 0.6249174529201162,
|
1340 |
+
"ndcg_exponential@1": 0.5375,
|
1341 |
+
"ndcg_exponential@5": 0.5841363021080511,
|
1342 |
+
"ndcg_exponential@10": 0.6249174529201162,
|
1343 |
+
"precision@1": 0.5375,
|
1344 |
+
"precision@5": 0.26875,
|
1345 |
+
"precision@10": 0.17625000000000002,
|
1346 |
+
"recall@1": 0.3166321699134199,
|
1347 |
+
"recall@5": 0.6228635886172651,
|
1348 |
+
"recall@10": 0.7383215161064426,
|
1349 |
+
"f1@1": 0.36593299062049056,
|
1350 |
+
"f1@5": 0.33357090132090134,
|
1351 |
+
"f1@10": 0.25719967294415824,
|
1352 |
+
"map@1": 0.5375,
|
1353 |
+
"map@5": 0.5106197916666666,
|
1354 |
+
"map@10": 0.5325731233465609,
|
1355 |
+
"mrr@1": 0.5375,
|
1356 |
+
"mrr@5": 0.6533333333333333,
|
1357 |
+
"mrr@10": 0.6637103174603174,
|
1358 |
+
"num_pred": 160,
|
1359 |
+
"num_data": 160
|
1360 |
+
},
|
1361 |
+
"ViDoRe_biomedical_lectures_v2_multilingual": {
|
1362 |
+
"hit@1": 0.490625,
|
1363 |
+
"hit@5": 0.8,
|
1364 |
+
"hit@10": 0.890625,
|
1365 |
+
"ndcg_linear@1": 0.490625,
|
1366 |
+
"ndcg_linear@5": 0.5434414494513081,
|
1367 |
+
"ndcg_linear@10": 0.582249778808178,
|
1368 |
+
"ndcg_exponential@1": 0.490625,
|
1369 |
+
"ndcg_exponential@5": 0.5434414494513081,
|
1370 |
+
"ndcg_exponential@10": 0.5822497788081779,
|
1371 |
+
"precision@1": 0.490625,
|
1372 |
+
"precision@5": 0.254375,
|
1373 |
+
"precision@10": 0.16359375000000004,
|
1374 |
+
"recall@1": 0.2916960107906799,
|
1375 |
+
"recall@5": 0.58253104508849,
|
1376 |
+
"recall@10": 0.6977005104059648,
|
1377 |
+
"f1@1": 0.33520032918470416,
|
1378 |
+
"f1@5": 0.3138615559787435,
|
1379 |
+
"f1@10": 0.23995111426223562,
|
1380 |
+
"map@1": 0.490625,
|
1381 |
+
"map@5": 0.47009505208333324,
|
1382 |
+
"map@10": 0.48930132895171957,
|
1383 |
+
"mrr@1": 0.490625,
|
1384 |
+
"mrr@5": 0.613671875,
|
1385 |
+
"mrr@10": 0.6260515873015873,
|
1386 |
+
"num_pred": 640,
|
1387 |
+
"num_data": 640
|
1388 |
+
},
|
1389 |
+
"ViDoRe_economics_reports_v2": {
|
1390 |
+
"hit@1": 0.7586206896551724,
|
1391 |
+
"hit@5": 0.9655172413793104,
|
1392 |
+
"hit@10": 0.9655172413793104,
|
1393 |
+
"ndcg_linear@1": 0.7586206896551724,
|
1394 |
+
"ndcg_linear@5": 0.6741969787919236,
|
1395 |
+
"ndcg_linear@10": 0.6190122003564679,
|
1396 |
+
"ndcg_exponential@1": 0.7586206896551724,
|
1397 |
+
"ndcg_exponential@5": 0.6741969787919236,
|
1398 |
+
"ndcg_exponential@10": 0.6190122003564678,
|
1399 |
+
"precision@1": 0.7586206896551724,
|
1400 |
+
"precision@5": 0.5758620689655172,
|
1401 |
+
"precision@10": 0.42241379310344823,
|
1402 |
+
"recall@1": 0.13585704413718444,
|
1403 |
+
"recall@5": 0.35288134780268793,
|
1404 |
+
"recall@10": 0.45080357139107263,
|
1405 |
+
"f1@1": 0.1922091657419343,
|
1406 |
+
"f1@5": 0.356547764866831,
|
1407 |
+
"f1@10": 0.3541634848772098,
|
1408 |
+
"map@1": 0.7586206896551724,
|
1409 |
+
"map@5": 0.5760680076628353,
|
1410 |
+
"map@10": 0.48829512775736095,
|
1411 |
+
"mrr@1": 0.7586206896551724,
|
1412 |
+
"mrr@5": 0.8482758620689655,
|
1413 |
+
"mrr@10": 0.8482758620689655,
|
1414 |
+
"num_pred": 58,
|
1415 |
+
"num_data": 58
|
1416 |
+
},
|
1417 |
+
"ViDoRe_economics_reports_v2_multilingual": {
|
1418 |
+
"hit@1": 0.7025862068965517,
|
1419 |
+
"hit@5": 0.9267241379310345,
|
1420 |
+
"hit@10": 0.9655172413793104,
|
1421 |
+
"ndcg_linear@1": 0.7025862068965517,
|
1422 |
+
"ndcg_linear@5": 0.6092499057967938,
|
1423 |
+
"ndcg_linear@10": 0.5716310478677091,
|
1424 |
+
"ndcg_exponential@1": 0.7025862068965517,
|
1425 |
+
"ndcg_exponential@5": 0.6092499057967938,
|
1426 |
+
"ndcg_exponential@10": 0.571631047867709,
|
1427 |
+
"precision@1": 0.7025862068965517,
|
1428 |
+
"precision@5": 0.5137931034482759,
|
1429 |
+
"precision@10": 0.39525862068965517,
|
1430 |
+
"recall@1": 0.11976302485978202,
|
1431 |
+
"recall@5": 0.3134997052445495,
|
1432 |
+
"recall@10": 0.4232996166582797,
|
1433 |
+
"f1@1": 0.1708464717573616,
|
1434 |
+
"f1@5": 0.3146703201409769,
|
1435 |
+
"f1@10": 0.330190439964704,
|
1436 |
+
"map@1": 0.7025862068965517,
|
1437 |
+
"map@5": 0.5082686781609195,
|
1438 |
+
"map@10": 0.43586978908741014,
|
1439 |
+
"mrr@1": 0.7025862068965517,
|
1440 |
+
"mrr@5": 0.7956896551724137,
|
1441 |
+
"mrr@10": 0.8007714148877941,
|
1442 |
+
"num_pred": 232,
|
1443 |
+
"num_data": 232
|
1444 |
+
},
|
1445 |
+
"ViDoRe_esg_reports_v2": {
|
1446 |
+
"hit@1": 0.6491228070175439,
|
1447 |
+
"hit@5": 0.8596491228070176,
|
1448 |
+
"hit@10": 0.8947368421052632,
|
1449 |
+
"ndcg_linear@1": 0.6491228070175439,
|
1450 |
+
"ndcg_linear@5": 0.5997641652064848,
|
1451 |
+
"ndcg_linear@10": 0.634484891188961,
|
1452 |
+
"ndcg_exponential@1": 0.6491228070175439,
|
1453 |
+
"ndcg_exponential@5": 0.5997641652064848,
|
1454 |
+
"ndcg_exponential@10": 0.634484891188961,
|
1455 |
+
"precision@1": 0.6491228070175439,
|
1456 |
+
"precision@5": 0.2771929824561403,
|
1457 |
+
"precision@10": 0.18771929824561406,
|
1458 |
+
"recall@1": 0.31802422723475354,
|
1459 |
+
"recall@5": 0.5807435254803677,
|
1460 |
+
"recall@10": 0.7037802840434418,
|
1461 |
+
"f1@1": 0.3830497579317905,
|
1462 |
+
"f1@5": 0.3241369172563792,
|
1463 |
+
"f1@10": 0.2614094743270236,
|
1464 |
+
"map@1": 0.6491228070175439,
|
1465 |
+
"map@5": 0.5182261208576998,
|
1466 |
+
"map@10": 0.5330643158822983,
|
1467 |
+
"mrr@1": 0.6491228070175439,
|
1468 |
+
"mrr@5": 0.7368421052631579,
|
1469 |
+
"mrr@10": 0.7407407407407407,
|
1470 |
+
"num_pred": 57,
|
1471 |
+
"num_data": 57
|
1472 |
+
},
|
1473 |
+
"ViDoRe_esg_reports_v2_multilingual": {
|
1474 |
+
"hit@1": 0.5614035087719298,
|
1475 |
+
"hit@5": 0.8552631578947368,
|
1476 |
+
"hit@10": 0.8903508771929824,
|
1477 |
+
"ndcg_linear@1": 0.5614035087719298,
|
1478 |
+
"ndcg_linear@5": 0.5682060214897536,
|
1479 |
+
"ndcg_linear@10": 0.5985226385169606,
|
1480 |
+
"ndcg_exponential@1": 0.5614035087719298,
|
1481 |
+
"ndcg_exponential@5": 0.5682060214897536,
|
1482 |
+
"ndcg_exponential@10": 0.5985226385169606,
|
1483 |
+
"precision@1": 0.5614035087719298,
|
1484 |
+
"precision@5": 0.2754385964912281,
|
1485 |
+
"precision@10": 0.18026315789473688,
|
1486 |
+
"recall@1": 0.27056182121971595,
|
1487 |
+
"recall@5": 0.5850093984962406,
|
1488 |
+
"recall@10": 0.6978070175438598,
|
1489 |
+
"f1@1": 0.32801009939848413,
|
1490 |
+
"f1@5": 0.32522762720398035,
|
1491 |
+
"f1@10": 0.25474615009098467,
|
1492 |
+
"map@1": 0.5614035087719298,
|
1493 |
+
"map@5": 0.47951510721247564,
|
1494 |
+
"map@10": 0.49127398937157707,
|
1495 |
+
"mrr@1": 0.5614035087719298,
|
1496 |
+
"mrr@5": 0.6827485380116959,
|
1497 |
+
"mrr@10": 0.6871031746031746,
|
1498 |
+
"num_pred": 228,
|
1499 |
+
"num_data": 228
|
1500 |
+
},
|
1501 |
+
"VisRAG_ArxivQA": {
|
1502 |
+
"hit@1": 0.7120098039215687,
|
1503 |
+
"hit@5": 0.8382352941176471,
|
1504 |
+
"hit@10": 0.8700980392156863,
|
1505 |
+
"ndcg_linear@1": 0.7120098039215687,
|
1506 |
+
"ndcg_linear@5": 0.7817991444138218,
|
1507 |
+
"ndcg_linear@10": 0.7919346368535662,
|
1508 |
+
"ndcg_exponential@1": 0.7120098039215687,
|
1509 |
+
"ndcg_exponential@5": 0.7817991444138218,
|
1510 |
+
"ndcg_exponential@10": 0.7919346368535662,
|
1511 |
+
"precision@1": 0.7120098039215687,
|
1512 |
+
"precision@5": 0.1676470588235294,
|
1513 |
+
"precision@10": 0.08700980392156861,
|
1514 |
+
"recall@1": 0.7120098039215687,
|
1515 |
+
"recall@5": 0.8382352941176471,
|
1516 |
+
"recall@10": 0.8700980392156863,
|
1517 |
+
"f1@1": 0.7120098039215687,
|
1518 |
+
"f1@5": 0.2794117647058824,
|
1519 |
+
"f1@10": 0.15819964349376117,
|
1520 |
+
"map@1": 0.7120098039215687,
|
1521 |
+
"map@5": 0.7628063725490196,
|
1522 |
+
"map@10": 0.766889880952381,
|
1523 |
+
"mrr@1": 0.7120098039215687,
|
1524 |
+
"mrr@5": 0.7628063725490196,
|
1525 |
+
"mrr@10": 0.766889880952381,
|
1526 |
+
"num_pred": 816,
|
1527 |
+
"num_data": 816
|
1528 |
+
},
|
1529 |
+
"VisRAG_ChartQA": {
|
1530 |
+
"hit@1": 0.6984126984126984,
|
1531 |
+
"hit@5": 0.873015873015873,
|
1532 |
+
"hit@10": 0.9206349206349206,
|
1533 |
+
"ndcg_linear@1": 0.6984126984126984,
|
1534 |
+
"ndcg_linear@5": 0.7952874267735981,
|
1535 |
+
"ndcg_linear@10": 0.8103095637633947,
|
1536 |
+
"ndcg_exponential@1": 0.6984126984126984,
|
1537 |
+
"ndcg_exponential@5": 0.7952874267735981,
|
1538 |
+
"ndcg_exponential@10": 0.8103095637633947,
|
1539 |
+
"precision@1": 0.6984126984126984,
|
1540 |
+
"precision@5": 0.17460317460317454,
|
1541 |
+
"precision@10": 0.09206349206349201,
|
1542 |
+
"recall@1": 0.6984126984126984,
|
1543 |
+
"recall@5": 0.873015873015873,
|
1544 |
+
"recall@10": 0.9206349206349206,
|
1545 |
+
"f1@1": 0.6984126984126984,
|
1546 |
+
"f1@5": 0.291005291005291,
|
1547 |
+
"f1@10": 0.16738816738816742,
|
1548 |
+
"map@1": 0.6984126984126984,
|
1549 |
+
"map@5": 0.7690476190476191,
|
1550 |
+
"map@10": 0.775,
|
1551 |
+
"mrr@1": 0.6984126984126984,
|
1552 |
+
"mrr@5": 0.7690476190476191,
|
1553 |
+
"mrr@10": 0.775,
|
1554 |
+
"num_pred": 63,
|
1555 |
+
"num_data": 63
|
1556 |
+
},
|
1557 |
+
"VisRAG_MP-DocVQA": {
|
1558 |
+
"hit@1": 0.6903553299492385,
|
1559 |
+
"hit@5": 0.8595600676818951,
|
1560 |
+
"hit@10": 0.9204737732656514,
|
1561 |
+
"ndcg_linear@1": 0.6903553299492385,
|
1562 |
+
"ndcg_linear@5": 0.7820349036494127,
|
1563 |
+
"ndcg_linear@10": 0.8015893567306576,
|
1564 |
+
"ndcg_exponential@1": 0.6903553299492385,
|
1565 |
+
"ndcg_exponential@5": 0.7820349036494127,
|
1566 |
+
"ndcg_exponential@10": 0.8015893567306576,
|
1567 |
+
"precision@1": 0.6903553299492385,
|
1568 |
+
"precision@5": 0.171912013536379,
|
1569 |
+
"precision@10": 0.09204737732656514,
|
1570 |
+
"recall@1": 0.6903553299492385,
|
1571 |
+
"recall@5": 0.8595600676818951,
|
1572 |
+
"recall@10": 0.9204737732656514,
|
1573 |
+
"f1@1": 0.6903553299492385,
|
1574 |
+
"f1@5": 0.28652002256063175,
|
1575 |
+
"f1@10": 0.16735886786648213,
|
1576 |
+
"map@1": 0.6903553299492385,
|
1577 |
+
"map@5": 0.7560631697687535,
|
1578 |
+
"map@10": 0.7640507077055301,
|
1579 |
+
"mrr@1": 0.6903553299492385,
|
1580 |
+
"mrr@5": 0.7560631697687535,
|
1581 |
+
"mrr@10": 0.7640507077055301,
|
1582 |
+
"num_pred": 591,
|
1583 |
+
"num_data": 591
|
1584 |
+
},
|
1585 |
+
"VisRAG_SlideVQA": {
|
1586 |
+
"hit@1": 0.8794964028776978,
|
1587 |
+
"hit@5": 0.9658273381294964,
|
1588 |
+
"hit@10": 0.9748201438848921,
|
1589 |
+
"ndcg_linear@1": 0.8794964028776978,
|
1590 |
+
"ndcg_linear@5": 0.9111322782066683,
|
1591 |
+
"ndcg_linear@10": 0.9166794486497265,
|
1592 |
+
"ndcg_exponential@1": 0.8794964028776978,
|
1593 |
+
"ndcg_exponential@5": 0.9111322782066683,
|
1594 |
+
"ndcg_exponential@10": 0.9166794486497265,
|
1595 |
+
"precision@1": 0.8794964028776978,
|
1596 |
+
"precision@5": 0.23776978417266184,
|
1597 |
+
"precision@10": 0.12122302158273382,
|
1598 |
+
"recall@1": 0.7562949640287769,
|
1599 |
+
"recall@5": 0.947841726618705,
|
1600 |
+
"recall@10": 0.9631294964028777,
|
1601 |
+
"f1@1": 0.7973621103117506,
|
1602 |
+
"f1@5": 0.37332990750256945,
|
1603 |
+
"f1@10": 0.2128569871375627,
|
1604 |
+
"map@1": 0.8794964028776978,
|
1605 |
+
"map@5": 0.8898381294964028,
|
1606 |
+
"map@10": 0.8929377926230444,
|
1607 |
+
"mrr@1": 0.8794964028776978,
|
1608 |
+
"mrr@5": 0.9164568345323741,
|
1609 |
+
"mrr@10": 0.9175181283544593,
|
1610 |
+
"num_pred": 556,
|
1611 |
+
"num_data": 556
|
1612 |
+
},
|
1613 |
+
"VisRAG_InfoVQA": {
|
1614 |
+
"hit@1": 0.786908077994429,
|
1615 |
+
"hit@5": 0.9401114206128134,
|
1616 |
+
"hit@10": 0.9665738161559888,
|
1617 |
+
"ndcg_linear@1": 0.786908077994429,
|
1618 |
+
"ndcg_linear@5": 0.871620682507705,
|
1619 |
+
"ndcg_linear@10": 0.8802332479350842,
|
1620 |
+
"ndcg_exponential@1": 0.786908077994429,
|
1621 |
+
"ndcg_exponential@5": 0.871620682507705,
|
1622 |
+
"ndcg_exponential@10": 0.8802332479350842,
|
1623 |
+
"precision@1": 0.786908077994429,
|
1624 |
+
"precision@5": 0.18802228412256264,
|
1625 |
+
"precision@10": 0.09665738161559888,
|
1626 |
+
"recall@1": 0.786908077994429,
|
1627 |
+
"recall@5": 0.9401114206128134,
|
1628 |
+
"recall@10": 0.9665738161559888,
|
1629 |
+
"f1@1": 0.786908077994429,
|
1630 |
+
"f1@5": 0.31337047353760455,
|
1631 |
+
"f1@10": 0.17574069384654348,
|
1632 |
+
"map@1": 0.786908077994429,
|
1633 |
+
"map@5": 0.8485143918291551,
|
1634 |
+
"map@10": 0.8521018481673078,
|
1635 |
+
"mrr@1": 0.786908077994429,
|
1636 |
+
"mrr@5": 0.8485143918291551,
|
1637 |
+
"mrr@10": 0.8521018481673078,
|
1638 |
+
"num_pred": 718,
|
1639 |
+
"num_data": 718
|
1640 |
+
},
|
1641 |
+
"VisRAG_PlotQA": {
|
1642 |
+
"hit@1": 0.47740440324449596,
|
1643 |
+
"hit@5": 0.7450753186558516,
|
1644 |
+
"hit@10": 0.8342989571263036,
|
1645 |
+
"ndcg_linear@1": 0.47740440324449596,
|
1646 |
+
"ndcg_linear@5": 0.6171386649075443,
|
1647 |
+
"ndcg_linear@10": 0.6460193087434463,
|
1648 |
+
"ndcg_exponential@1": 0.47740440324449596,
|
1649 |
+
"ndcg_exponential@5": 0.6171386649075443,
|
1650 |
+
"ndcg_exponential@10": 0.6460193087434463,
|
1651 |
+
"precision@1": 0.47740440324449596,
|
1652 |
+
"precision@5": 0.14901506373117032,
|
1653 |
+
"precision@10": 0.08342989571263036,
|
1654 |
+
"recall@1": 0.47740440324449596,
|
1655 |
+
"recall@5": 0.7450753186558516,
|
1656 |
+
"recall@10": 0.8342989571263036,
|
1657 |
+
"f1@1": 0.47740440324449596,
|
1658 |
+
"f1@5": 0.24835843955195064,
|
1659 |
+
"f1@10": 0.15169071947750978,
|
1660 |
+
"map@1": 0.47740440324449596,
|
1661 |
+
"map@5": 0.5747779065276168,
|
1662 |
+
"map@10": 0.5867033603707996,
|
1663 |
+
"mrr@1": 0.47740440324449596,
|
1664 |
+
"mrr@5": 0.5747779065276168,
|
1665 |
+
"mrr@10": 0.5867033603707996,
|
1666 |
+
"num_pred": 863,
|
1667 |
+
"num_data": 863
|
1668 |
+
},
|
1669 |
+
"ViDoSeek-page": {
|
1670 |
+
"hit@1": 0.028021015761821366,
|
1671 |
+
"hit@5": 0.4115586690017513,
|
1672 |
+
"hit@10": 0.6514886164623468,
|
1673 |
+
"ndcg_linear@1": 0.028021015761821366,
|
1674 |
+
"ndcg_linear@5": 0.22470566490499208,
|
1675 |
+
"ndcg_linear@10": 0.3023957738482507,
|
1676 |
+
"ndcg_exponential@1": 0.028021015761821366,
|
1677 |
+
"ndcg_exponential@5": 0.2247056649049921,
|
1678 |
+
"ndcg_exponential@10": 0.3023957738482508,
|
1679 |
+
"precision@1": 0.028021015761821366,
|
1680 |
+
"precision@5": 0.08231173380035026,
|
1681 |
+
"precision@10": 0.06514886164623468,
|
1682 |
+
"recall@1": 0.028021015761821366,
|
1683 |
+
"recall@5": 0.4115586690017513,
|
1684 |
+
"recall@10": 0.6514886164623468,
|
1685 |
+
"f1@1": 0.028021015761821366,
|
1686 |
+
"f1@5": 0.13718622300058378,
|
1687 |
+
"f1@10": 0.11845247572042672,
|
1688 |
+
"map@1": 0.028021015761821366,
|
1689 |
+
"map@5": 0.16317863397548157,
|
1690 |
+
"map@10": 0.19531176159897704,
|
1691 |
+
"mrr@1": 0.028021015761821366,
|
1692 |
+
"mrr@5": 0.16317863397548157,
|
1693 |
+
"mrr@10": 0.19531176159897704,
|
1694 |
+
"num_pred": 1142,
|
1695 |
+
"num_data": 1142
|
1696 |
+
},
|
1697 |
+
"ViDoSeek-doc": {
|
1698 |
+
"hit@1": 0.9929947460595446,
|
1699 |
+
"hit@5": 0.9964973730297724,
|
1700 |
+
"hit@10": 0.9973730297723292,
|
1701 |
+
"ndcg_linear@1": 0.6780502043199066,
|
1702 |
+
"ndcg_linear@5": 0.8347155048681709,
|
1703 |
+
"ndcg_linear@10": 0.8283316874780556,
|
1704 |
+
"ndcg_exponential@1": 0.4530898173630222,
|
1705 |
+
"ndcg_exponential@5": 0.7153063162905082,
|
1706 |
+
"ndcg_exponential@10": 0.7524802642874342,
|
1707 |
+
"precision@1": 0.9929947460595446,
|
1708 |
+
"precision@5": 0.9224168126094572,
|
1709 |
+
"precision@10": 0.8474605954465849,
|
1710 |
+
"recall@1": 0.05858093829304035,
|
1711 |
+
"recall@5": 0.27097789072938616,
|
1712 |
+
"recall@10": 0.4882164962990025,
|
1713 |
+
"f1@1": 0.10988695226799426,
|
1714 |
+
"f1@5": 0.4104084006565447,
|
1715 |
+
"f1@10": 0.605623879196985,
|
1716 |
+
"map@1": 0.9929947460595446,
|
1717 |
+
"map@5": 0.9156625802685348,
|
1718 |
+
"map@10": 0.8379593772710485,
|
1719 |
+
"mrr@1": 0.9929947460595446,
|
1720 |
+
"mrr@5": 0.9943812025685932,
|
1721 |
+
"mrr@10": 0.9944687682428489,
|
1722 |
+
"num_pred": 1142,
|
1723 |
+
"num_data": 1142
|
1724 |
+
},
|
1725 |
+
"MMLongBench-page": {
|
1726 |
+
"hit@1": 0.07517899761336516,
|
1727 |
+
"hit@5": 0.30668257756563244,
|
1728 |
+
"hit@10": 0.40692124105011934,
|
1729 |
+
"ndcg_linear@1": 0.07517899761336516,
|
1730 |
+
"ndcg_linear@5": 0.15889672106004182,
|
1731 |
+
"ndcg_linear@10": 0.19237673084837761,
|
1732 |
+
"ndcg_exponential@1": 0.07517899761336516,
|
1733 |
+
"ndcg_exponential@5": 0.15889672106004182,
|
1734 |
+
"ndcg_exponential@10": 0.19237673084837764,
|
1735 |
+
"precision@1": 0.07517899761336516,
|
1736 |
+
"precision@5": 0.07136038186157519,
|
1737 |
+
"precision@10": 0.05286396181384249,
|
1738 |
+
"recall@1": 0.04922434367541766,
|
1739 |
+
"recall@5": 0.22613081031935447,
|
1740 |
+
"recall@10": 0.3179622684395954,
|
1741 |
+
"f1@1": 0.05696844921188596,
|
1742 |
+
"f1@5": 0.10252626544217168,
|
1743 |
+
"f1@10": 0.08628360174493102,
|
1744 |
+
"map@1": 0.07517899761336516,
|
1745 |
+
"map@5": 0.11930389817024661,
|
1746 |
+
"map@10": 0.134453706071397,
|
1747 |
+
"mrr@1": 0.07517899761336516,
|
1748 |
+
"mrr@5": 0.16205250596658713,
|
1749 |
+
"mrr@10": 0.17527607303860288,
|
1750 |
+
"num_pred": 838,
|
1751 |
+
"num_data": 838
|
1752 |
+
},
|
1753 |
+
"MMLongBench-doc": {
|
1754 |
+
"hit@1": 0.6992840095465394,
|
1755 |
+
"hit@5": 0.788782816229117,
|
1756 |
+
"hit@10": 0.8305489260143198,
|
1757 |
+
"ndcg_linear@1": 0.4908512330946698,
|
1758 |
+
"ndcg_linear@5": 0.5151318143032525,
|
1759 |
+
"ndcg_linear@10": 0.4942756345433957,
|
1760 |
+
"ndcg_exponential@1": 0.3419706784861916,
|
1761 |
+
"ndcg_exponential@5": 0.43117309505779183,
|
1762 |
+
"ndcg_exponential@10": 0.439350643034243,
|
1763 |
+
"precision@1": 0.6992840095465394,
|
1764 |
+
"precision@5": 0.5708830548926014,
|
1765 |
+
"precision@10": 0.5034606205250597,
|
1766 |
+
"recall@1": 0.022724297502752358,
|
1767 |
+
"recall@5": 0.09002044278616353,
|
1768 |
+
"recall@10": 0.1555140961544712,
|
1769 |
+
"f1@1": 0.04359714278969275,
|
1770 |
+
"f1@5": 0.14945001865951169,
|
1771 |
+
"f1@10": 0.2231273977054642,
|
1772 |
+
"map@1": 0.6992840095465394,
|
1773 |
+
"map@5": 0.5389498806682578,
|
1774 |
+
"map@10": 0.4554091058327336,
|
1775 |
+
"mrr@1": 0.6992840095465394,
|
1776 |
+
"mrr@5": 0.7340294351630867,
|
1777 |
+
"mrr@10": 0.7398544342160094,
|
1778 |
+
"num_pred": 838,
|
1779 |
+
"num_data": 838
|
1780 |
+
}
|
1781 |
+
},
|
1782 |
+
"video": {
|
1783 |
+
"DiDeMo": {
|
1784 |
+
"hit@1": 0.46115537848605576,
|
1785 |
+
"hit@5": 0.7141434262948207,
|
1786 |
+
"hit@10": 0.7928286852589641,
|
1787 |
+
"ndcg_linear@1": 0.46115537848605576,
|
1788 |
+
"ndcg_linear@5": 0.597854832187236,
|
1789 |
+
"ndcg_linear@10": 0.623638688484401,
|
1790 |
+
"ndcg_exponential@1": 0.46115537848605576,
|
1791 |
+
"ndcg_exponential@5": 0.597854832187236,
|
1792 |
+
"ndcg_exponential@10": 0.623638688484401,
|
1793 |
+
"precision@1": 0.46115537848605576,
|
1794 |
+
"precision@5": 0.14282868525896414,
|
1795 |
+
"precision@10": 0.0792828685258964,
|
1796 |
+
"recall@1": 0.46115537848605576,
|
1797 |
+
"recall@5": 0.7141434262948207,
|
1798 |
+
"recall@10": 0.7928286852589641,
|
1799 |
+
"f1@1": 0.46115537848605576,
|
1800 |
+
"f1@5": 0.2380478087649403,
|
1801 |
+
"f1@10": 0.1441506700470844,
|
1802 |
+
"map@1": 0.46115537848605576,
|
1803 |
+
"map@5": 0.5588977423638777,
|
1804 |
+
"map@10": 0.5697341586036806,
|
1805 |
+
"mrr@1": 0.46115537848605576,
|
1806 |
+
"mrr@5": 0.5588977423638777,
|
1807 |
+
"mrr@10": 0.5697341586036806,
|
1808 |
+
"num_pred": 1004,
|
1809 |
+
"num_data": 1004
|
1810 |
+
},
|
1811 |
+
"MSR-VTT": {
|
1812 |
+
"hit@1": 0.494,
|
1813 |
+
"hit@5": 0.718,
|
1814 |
+
"hit@10": 0.809,
|
1815 |
+
"ndcg_linear@1": 0.494,
|
1816 |
+
"ndcg_linear@5": 0.6126583935599356,
|
1817 |
+
"ndcg_linear@10": 0.6418663414853761,
|
1818 |
+
"ndcg_exponential@1": 0.494,
|
1819 |
+
"ndcg_exponential@5": 0.6126583935599356,
|
1820 |
+
"ndcg_exponential@10": 0.6418663414853761,
|
1821 |
+
"precision@1": 0.494,
|
1822 |
+
"precision@5": 0.1436,
|
1823 |
+
"precision@10": 0.0809,
|
1824 |
+
"recall@1": 0.494,
|
1825 |
+
"recall@5": 0.718,
|
1826 |
+
"recall@10": 0.809,
|
1827 |
+
"f1@1": 0.494,
|
1828 |
+
"f1@5": 0.2393333333333334,
|
1829 |
+
"f1@10": 0.14709090909090913,
|
1830 |
+
"map@1": 0.494,
|
1831 |
+
"map@5": 0.5777,
|
1832 |
+
"map@10": 0.5896333333333333,
|
1833 |
+
"mrr@1": 0.494,
|
1834 |
+
"mrr@5": 0.5777,
|
1835 |
+
"mrr@10": 0.5896333333333333,
|
1836 |
+
"num_pred": 1000,
|
1837 |
+
"num_data": 1000
|
1838 |
+
},
|
1839 |
+
"MSVD": {
|
1840 |
+
"hit@1": 0.6716417910447762,
|
1841 |
+
"hit@5": 0.9044776119402985,
|
1842 |
+
"hit@10": 0.9507462686567164,
|
1843 |
+
"ndcg_linear@1": 0.6716417910447762,
|
1844 |
+
"ndcg_linear@5": 0.8018114248883265,
|
1845 |
+
"ndcg_linear@10": 0.8170350100109979,
|
1846 |
+
"ndcg_exponential@1": 0.6716417910447762,
|
1847 |
+
"ndcg_exponential@5": 0.8018114248883265,
|
1848 |
+
"ndcg_exponential@10": 0.8170350100109979,
|
1849 |
+
"precision@1": 0.6716417910447762,
|
1850 |
+
"precision@5": 0.18089552238805967,
|
1851 |
+
"precision@10": 0.09507462686567163,
|
1852 |
+
"recall@1": 0.6716417910447762,
|
1853 |
+
"recall@5": 0.9044776119402985,
|
1854 |
+
"recall@10": 0.9507462686567164,
|
1855 |
+
"f1@1": 0.6716417910447762,
|
1856 |
+
"f1@5": 0.3014925373134329,
|
1857 |
+
"f1@10": 0.17286295793758483,
|
1858 |
+
"map@1": 0.6716417910447762,
|
1859 |
+
"map@5": 0.7671144278606964,
|
1860 |
+
"map@10": 0.7735459606728263,
|
1861 |
+
"mrr@1": 0.6716417910447762,
|
1862 |
+
"mrr@5": 0.7671144278606964,
|
1863 |
+
"mrr@10": 0.7735459606728263,
|
1864 |
+
"num_pred": 670,
|
1865 |
+
"num_data": 670
|
1866 |
+
},
|
1867 |
+
"VATEX": {
|
1868 |
+
"hit@1": 0.43948191156766414,
|
1869 |
+
"hit@5": 0.7168378740509156,
|
1870 |
+
"hit@10": 0.8164359088878964,
|
1871 |
+
"ndcg_linear@1": 0.43948191156766414,
|
1872 |
+
"ndcg_linear@5": 0.5876683667478259,
|
1873 |
+
"ndcg_linear@10": 0.6199711102927952,
|
1874 |
+
"ndcg_exponential@1": 0.43948191156766414,
|
1875 |
+
"ndcg_exponential@5": 0.5876683667478259,
|
1876 |
+
"ndcg_exponential@10": 0.6199711102927952,
|
1877 |
+
"precision@1": 0.43948191156766414,
|
1878 |
+
"precision@5": 0.1433675748101831,
|
1879 |
+
"precision@10": 0.08164359088878963,
|
1880 |
+
"recall@1": 0.43948191156766414,
|
1881 |
+
"recall@5": 0.7168378740509156,
|
1882 |
+
"recall@10": 0.8164359088878964,
|
1883 |
+
"f1@1": 0.43948191156766414,
|
1884 |
+
"f1@5": 0.2389459580169719,
|
1885 |
+
"f1@10": 0.14844289252507206,
|
1886 |
+
"map@1": 0.43948191156766414,
|
1887 |
+
"map@5": 0.544606967396159,
|
1888 |
+
"map@10": 0.5579919819647376,
|
1889 |
+
"mrr@1": 0.43948191156766414,
|
1890 |
+
"mrr@5": 0.544606967396159,
|
1891 |
+
"mrr@10": 0.5579919819647376,
|
1892 |
+
"num_pred": 4478,
|
1893 |
+
"num_data": 4478
|
1894 |
+
},
|
1895 |
+
"YouCook2": {
|
1896 |
+
"hit@1": 0.2195659012268009,
|
1897 |
+
"hit@5": 0.44510852469329976,
|
1898 |
+
"hit@10": 0.5558351682919157,
|
1899 |
+
"ndcg_linear@1": 0.2195659012268009,
|
1900 |
+
"ndcg_linear@5": 0.33707072315082415,
|
1901 |
+
"ndcg_linear@10": 0.3726523748344782,
|
1902 |
+
"ndcg_exponential@1": 0.2195659012268009,
|
1903 |
+
"ndcg_exponential@5": 0.33707072315082415,
|
1904 |
+
"ndcg_exponential@10": 0.3726523748344782,
|
1905 |
+
"precision@1": 0.2195659012268009,
|
1906 |
+
"precision@5": 0.08902170493865996,
|
1907 |
+
"precision@10": 0.05558351682919157,
|
1908 |
+
"recall@1": 0.2195659012268009,
|
1909 |
+
"recall@5": 0.44510852469329976,
|
1910 |
+
"recall@10": 0.5558351682919157,
|
1911 |
+
"f1@1": 0.2195659012268009,
|
1912 |
+
"f1@5": 0.14836950823109996,
|
1913 |
+
"f1@10": 0.10106093968943923,
|
1914 |
+
"map@1": 0.2195659012268009,
|
1915 |
+
"map@5": 0.30132117017930166,
|
1916 |
+
"map@10": 0.31586977036804026,
|
1917 |
+
"mrr@1": 0.2195659012268009,
|
1918 |
+
"mrr@5": 0.30132117017930166,
|
1919 |
+
"mrr@10": 0.31586977036804026,
|
1920 |
+
"num_pred": 3179,
|
1921 |
+
"num_data": 3179
|
1922 |
+
},
|
1923 |
+
"QVHighlight": {
|
1924 |
+
"hit@1": 0.5817174515235457,
|
1925 |
+
"hit@5": 0.8688827331486612,
|
1926 |
+
"hit@10": 1.0,
|
1927 |
+
"ndcg_linear@1": 0.5817174515235457,
|
1928 |
+
"ndcg_linear@5": 0.7355674322372523,
|
1929 |
+
"ndcg_linear@10": 0.778061976394854,
|
1930 |
+
"ndcg_exponential@1": 0.5817174515235457,
|
1931 |
+
"ndcg_exponential@5": 0.7355674322372523,
|
1932 |
+
"ndcg_exponential@10": 0.778061976394854,
|
1933 |
+
"precision@1": 0.5817174515235457,
|
1934 |
+
"precision@5": 0.17377654662973221,
|
1935 |
+
"precision@10": 0.09999999999999998,
|
1936 |
+
"recall@1": 0.5817174515235457,
|
1937 |
+
"recall@5": 0.8688827331486612,
|
1938 |
+
"recall@10": 1.0,
|
1939 |
+
"f1@1": 0.5817174515235457,
|
1940 |
+
"f1@5": 0.28962757771622044,
|
1941 |
+
"f1@10": 0.18181818181818185,
|
1942 |
+
"map@1": 0.5817174515235457,
|
1943 |
+
"map@5": 0.6910587873191752,
|
1944 |
+
"map@10": 0.7086550440428556,
|
1945 |
+
"mrr@1": 0.5817174515235457,
|
1946 |
+
"mrr@5": 0.6910587873191752,
|
1947 |
+
"mrr@10": 0.7086550440428556,
|
1948 |
+
"num_pred": 1083,
|
1949 |
+
"num_data": 1083
|
1950 |
+
},
|
1951 |
+
"Charades-STA": {
|
1952 |
+
"hit@1": 0.24896836313617607,
|
1953 |
+
"hit@5": 0.6189821182943603,
|
1954 |
+
"hit@10": 1.0,
|
1955 |
+
"ndcg_linear@1": 0.24896836313617607,
|
1956 |
+
"ndcg_linear@5": 0.4350379203932738,
|
1957 |
+
"ndcg_linear@10": 0.554874249964459,
|
1958 |
+
"ndcg_exponential@1": 0.24896836313617607,
|
1959 |
+
"ndcg_exponential@5": 0.4350379203932738,
|
1960 |
+
"ndcg_exponential@10": 0.554874249964459,
|
1961 |
+
"precision@1": 0.24896836313617607,
|
1962 |
+
"precision@5": 0.12379642365887207,
|
1963 |
+
"precision@10": 0.09999999999999998,
|
1964 |
+
"recall@1": 0.24896836313617607,
|
1965 |
+
"recall@5": 0.6189821182943603,
|
1966 |
+
"recall@10": 1.0,
|
1967 |
+
"f1@1": 0.24896836313617607,
|
1968 |
+
"f1@5": 0.20632737276478683,
|
1969 |
+
"f1@10": 0.18181818181818185,
|
1970 |
+
"map@1": 0.24896836313617607,
|
1971 |
+
"map@5": 0.3748509857863365,
|
1972 |
+
"map@10": 0.4223728739547171,
|
1973 |
+
"mrr@1": 0.24896836313617607,
|
1974 |
+
"mrr@5": 0.3748509857863365,
|
1975 |
+
"mrr@10": 0.4223728739547171,
|
1976 |
+
"num_pred": 727,
|
1977 |
+
"num_data": 727
|
1978 |
+
},
|
1979 |
+
"MomentSeeker": {
|
1980 |
+
"hit@1": 0.46555555555555556,
|
1981 |
+
"hit@5": 0.9027777777777778,
|
1982 |
+
"hit@10": 1.0,
|
1983 |
+
"ndcg_linear@1": 0.46555555555555556,
|
1984 |
+
"ndcg_linear@5": 0.7032832283395833,
|
1985 |
+
"ndcg_linear@10": 0.7383141215502083,
|
1986 |
+
"ndcg_exponential@1": 0.46555555555555556,
|
1987 |
+
"ndcg_exponential@5": 0.7032832283395833,
|
1988 |
+
"ndcg_exponential@10": 0.7383141215502083,
|
1989 |
+
"precision@1": 0.46555555555555556,
|
1990 |
+
"precision@5": 0.2011111111111111,
|
1991 |
+
"precision@10": 0.11288888888888891,
|
1992 |
+
"recall@1": 0.4385185185185185,
|
1993 |
+
"recall@5": 0.8939583333333333,
|
1994 |
+
"recall@10": 0.9981481481481482,
|
1995 |
+
"f1@1": 0.44680511463844796,
|
1996 |
+
"f1@5": 0.32284955784955793,
|
1997 |
+
"f1@10": 0.20018091476424807,
|
1998 |
+
"map@1": 0.46555555555555556,
|
1999 |
+
"map@5": 0.635270524691358,
|
2000 |
+
"map@10": 0.651133616255144,
|
2001 |
+
"mrr@1": 0.46555555555555556,
|
2002 |
+
"mrr@5": 0.6413055555555555,
|
2003 |
+
"mrr@10": 0.6548293650793651,
|
2004 |
+
"num_pred": 1800,
|
2005 |
+
"num_data": 1800
|
2006 |
+
},
|
2007 |
+
"K700": {
|
2008 |
+
"hit@1": 0.59,
|
2009 |
+
"hit@5": 0.806,
|
2010 |
+
"hit@10": 0.857,
|
2011 |
+
"ndcg_linear@1": 0.59,
|
2012 |
+
"ndcg_linear@5": 0.7077746148817649,
|
2013 |
+
"ndcg_linear@10": 0.724000273666642,
|
2014 |
+
"ndcg_exponential@1": 0.59,
|
2015 |
+
"ndcg_exponential@5": 0.7077746148817649,
|
2016 |
+
"ndcg_exponential@10": 0.724000273666642,
|
2017 |
+
"precision@1": 0.59,
|
2018 |
+
"precision@5": 0.16119999999999998,
|
2019 |
+
"precision@10": 0.08570000000000001,
|
2020 |
+
"recall@1": 0.59,
|
2021 |
+
"recall@5": 0.806,
|
2022 |
+
"recall@10": 0.857,
|
2023 |
+
"f1@1": 0.59,
|
2024 |
+
"f1@5": 0.26866666666666666,
|
2025 |
+
"f1@10": 0.1558181818181818,
|
2026 |
+
"map@1": 0.59,
|
2027 |
+
"map@5": 0.6748333333333334,
|
2028 |
+
"map@10": 0.681372619047619,
|
2029 |
+
"mrr@1": 0.59,
|
2030 |
+
"mrr@5": 0.6748333333333334,
|
2031 |
+
"mrr@10": 0.681372619047619,
|
2032 |
+
"num_pred": 1000,
|
2033 |
+
"num_data": 1000
|
2034 |
+
},
|
2035 |
+
"SmthSmthV2": {
|
2036 |
+
"hit@1": 0.646,
|
2037 |
+
"hit@5": 0.866,
|
2038 |
+
"hit@10": 0.919,
|
2039 |
+
"ndcg_linear@1": 0.646,
|
2040 |
+
"ndcg_linear@5": 0.7665689935313655,
|
2041 |
+
"ndcg_linear@10": 0.7835822912819611,
|
2042 |
+
"ndcg_exponential@1": 0.646,
|
2043 |
+
"ndcg_exponential@5": 0.7665689935313655,
|
2044 |
+
"ndcg_exponential@10": 0.7835822912819611,
|
2045 |
+
"precision@1": 0.646,
|
2046 |
+
"precision@5": 0.17320000000000002,
|
2047 |
+
"precision@10": 0.09190000000000001,
|
2048 |
+
"recall@1": 0.646,
|
2049 |
+
"recall@5": 0.866,
|
2050 |
+
"recall@10": 0.919,
|
2051 |
+
"f1@1": 0.646,
|
2052 |
+
"f1@5": 0.2886666666666667,
|
2053 |
+
"f1@10": 0.16709090909090907,
|
2054 |
+
"map@1": 0.646,
|
2055 |
+
"map@5": 0.7331333333333333,
|
2056 |
+
"map@10": 0.7400765873015873,
|
2057 |
+
"mrr@1": 0.646,
|
2058 |
+
"mrr@5": 0.7331333333333333,
|
2059 |
+
"mrr@10": 0.7400765873015873,
|
2060 |
+
"num_pred": 1000,
|
2061 |
+
"num_data": 1000
|
2062 |
+
},
|
2063 |
+
"HMDB51": {
|
2064 |
+
"hit@1": 0.593,
|
2065 |
+
"hit@5": 0.811,
|
2066 |
+
"hit@10": 0.885,
|
2067 |
+
"ndcg_linear@1": 0.593,
|
2068 |
+
"ndcg_linear@5": 0.7090441379199225,
|
2069 |
+
"ndcg_linear@10": 0.733036952422186,
|
2070 |
+
"ndcg_exponential@1": 0.593,
|
2071 |
+
"ndcg_exponential@5": 0.7090441379199225,
|
2072 |
+
"ndcg_exponential@10": 0.733036952422186,
|
2073 |
+
"precision@1": 0.593,
|
2074 |
+
"precision@5": 0.16219999999999998,
|
2075 |
+
"precision@10": 0.0885,
|
2076 |
+
"recall@1": 0.593,
|
2077 |
+
"recall@5": 0.811,
|
2078 |
+
"recall@10": 0.885,
|
2079 |
+
"f1@1": 0.593,
|
2080 |
+
"f1@5": 0.27033333333333337,
|
2081 |
+
"f1@10": 0.16090909090909095,
|
2082 |
+
"map@1": 0.593,
|
2083 |
+
"map@5": 0.6751,
|
2084 |
+
"map@10": 0.6850373015873016,
|
2085 |
+
"mrr@1": 0.593,
|
2086 |
+
"mrr@5": 0.6751,
|
2087 |
+
"mrr@10": 0.6850373015873016,
|
2088 |
+
"num_pred": 1000,
|
2089 |
+
"num_data": 1000
|
2090 |
+
},
|
2091 |
+
"UCF101": {
|
2092 |
+
"hit@1": 0.788,
|
2093 |
+
"hit@5": 0.965,
|
2094 |
+
"hit@10": 0.989,
|
2095 |
+
"ndcg_linear@1": 0.788,
|
2096 |
+
"ndcg_linear@5": 0.8873256149390782,
|
2097 |
+
"ndcg_linear@10": 0.895344170842387,
|
2098 |
+
"ndcg_exponential@1": 0.788,
|
2099 |
+
"ndcg_exponential@5": 0.8873256149390782,
|
2100 |
+
"ndcg_exponential@10": 0.895344170842387,
|
2101 |
+
"precision@1": 0.788,
|
2102 |
+
"precision@5": 0.19300000000000003,
|
2103 |
+
"precision@10": 0.0989,
|
2104 |
+
"recall@1": 0.788,
|
2105 |
+
"recall@5": 0.965,
|
2106 |
+
"recall@10": 0.989,
|
2107 |
+
"f1@1": 0.788,
|
2108 |
+
"f1@5": 0.3216666666666667,
|
2109 |
+
"f1@10": 0.1798181818181818,
|
2110 |
+
"map@1": 0.788,
|
2111 |
+
"map@5": 0.8610833333333333,
|
2112 |
+
"map@10": 0.8645432539682539,
|
2113 |
+
"mrr@1": 0.788,
|
2114 |
+
"mrr@5": 0.8610833333333333,
|
2115 |
+
"mrr@10": 0.8645432539682539,
|
2116 |
+
"num_pred": 1000,
|
2117 |
+
"num_data": 1000
|
2118 |
+
},
|
2119 |
+
"Breakfast": {
|
2120 |
+
"hit@1": 0.3672055427251732,
|
2121 |
+
"hit@5": 0.789838337182448,
|
2122 |
+
"hit@10": 1.0,
|
2123 |
+
"ndcg_linear@1": 0.3672055427251732,
|
2124 |
+
"ndcg_linear@5": 0.5786460297178996,
|
2125 |
+
"ndcg_linear@10": 0.6478264872451965,
|
2126 |
+
"ndcg_exponential@1": 0.3672055427251732,
|
2127 |
+
"ndcg_exponential@5": 0.5786460297178996,
|
2128 |
+
"ndcg_exponential@10": 0.6478264872451965,
|
2129 |
+
"precision@1": 0.3672055427251732,
|
2130 |
+
"precision@5": 0.15796766743648963,
|
2131 |
+
"precision@10": 0.1,
|
2132 |
+
"recall@1": 0.3672055427251732,
|
2133 |
+
"recall@5": 0.789838337182448,
|
2134 |
+
"recall@10": 1.0,
|
2135 |
+
"f1@1": 0.3672055427251732,
|
2136 |
+
"f1@5": 0.26327944572748274,
|
2137 |
+
"f1@10": 0.1818181818181818,
|
2138 |
+
"map@1": 0.3672055427251732,
|
2139 |
+
"map@5": 0.5095073133179369,
|
2140 |
+
"map@10": 0.5387706660801349,
|
2141 |
+
"mrr@1": 0.3672055427251732,
|
2142 |
+
"mrr@5": 0.5095073133179369,
|
2143 |
+
"mrr@10": 0.5387706660801349,
|
2144 |
+
"num_pred": 433,
|
2145 |
+
"num_data": 433
|
2146 |
+
},
|
2147 |
+
"MVBench": {
|
2148 |
+
"hit@1": 0.56975,
|
2149 |
+
"hit@5": 1.0,
|
2150 |
+
"hit@10": 1.0,
|
2151 |
+
"ndcg_linear@1": 0.56975,
|
2152 |
+
"ndcg_linear@5": 0.8110591965257652,
|
2153 |
+
"ndcg_linear@10": 0.8110591965257652,
|
2154 |
+
"ndcg_exponential@1": 0.56975,
|
2155 |
+
"ndcg_exponential@5": 0.8110591965257652,
|
2156 |
+
"ndcg_exponential@10": 0.8110591965257652,
|
2157 |
+
"precision@1": 0.56975,
|
2158 |
+
"precision@5": 0.20000000000000004,
|
2159 |
+
"precision@10": 0.10000000000000002,
|
2160 |
+
"recall@1": 0.56975,
|
2161 |
+
"recall@5": 1.0,
|
2162 |
+
"recall@10": 1.0,
|
2163 |
+
"f1@1": 0.56975,
|
2164 |
+
"f1@5": 0.3333333333333333,
|
2165 |
+
"f1@10": 0.18181818181818182,
|
2166 |
+
"map@1": 0.56975,
|
2167 |
+
"map@5": 0.746825,
|
2168 |
+
"map@10": 0.746825,
|
2169 |
+
"mrr@1": 0.56975,
|
2170 |
+
"mrr@5": 0.746825,
|
2171 |
+
"mrr@10": 0.746825,
|
2172 |
+
"num_pred": 4000,
|
2173 |
+
"num_data": 4000
|
2174 |
+
},
|
2175 |
+
"Video-MME": {
|
2176 |
+
"hit@1": 0.5088888888888888,
|
2177 |
+
"hit@5": 1.0,
|
2178 |
+
"hit@10": 1.0,
|
2179 |
+
"ndcg_linear@1": 0.5088888888888888,
|
2180 |
+
"ndcg_linear@5": 0.7738633421698715,
|
2181 |
+
"ndcg_linear@10": 0.7738633421698715,
|
2182 |
+
"ndcg_exponential@1": 0.5088888888888888,
|
2183 |
+
"ndcg_exponential@5": 0.7738633421698715,
|
2184 |
+
"ndcg_exponential@10": 0.7738633421698715,
|
2185 |
+
"precision@1": 0.5088888888888888,
|
2186 |
+
"precision@5": 0.19999999999999996,
|
2187 |
+
"precision@10": 0.09999999999999998,
|
2188 |
+
"recall@1": 0.5088888888888888,
|
2189 |
+
"recall@5": 1.0,
|
2190 |
+
"recall@10": 1.0,
|
2191 |
+
"f1@1": 0.5088888888888888,
|
2192 |
+
"f1@5": 0.3333333333333334,
|
2193 |
+
"f1@10": 0.18181818181818188,
|
2194 |
+
"map@1": 0.5088888888888888,
|
2195 |
+
"map@5": 0.6979012345679012,
|
2196 |
+
"map@10": 0.6979012345679012,
|
2197 |
+
"mrr@1": 0.5088888888888888,
|
2198 |
+
"mrr@5": 0.6979012345679012,
|
2199 |
+
"mrr@10": 0.6979012345679012,
|
2200 |
+
"num_pred": 2700,
|
2201 |
+
"num_data": 2700
|
2202 |
+
},
|
2203 |
+
"NExTQA": {
|
2204 |
+
"hit@1": 0.6705978514712752,
|
2205 |
+
"hit@5": 1.0,
|
2206 |
+
"hit@10": 1.0,
|
2207 |
+
"ndcg_linear@1": 0.6705978514712752,
|
2208 |
+
"ndcg_linear@5": 0.8495446170574841,
|
2209 |
+
"ndcg_linear@10": 0.8495446170574841,
|
2210 |
+
"ndcg_exponential@1": 0.6705978514712752,
|
2211 |
+
"ndcg_exponential@5": 0.8495446170574841,
|
2212 |
+
"ndcg_exponential@10": 0.8495446170574841,
|
2213 |
+
"precision@1": 0.6705978514712752,
|
2214 |
+
"precision@5": 0.20000000000000004,
|
2215 |
+
"precision@10": 0.10000000000000002,
|
2216 |
+
"recall@1": 0.6705978514712752,
|
2217 |
+
"recall@5": 1.0,
|
2218 |
+
"recall@10": 1.0,
|
2219 |
+
"f1@1": 0.6705978514712752,
|
2220 |
+
"f1@5": 0.3333333333333333,
|
2221 |
+
"f1@10": 0.1818181818181818,
|
2222 |
+
"map@1": 0.6705978514712752,
|
2223 |
+
"map@5": 0.7991339716643312,
|
2224 |
+
"map@10": 0.7991339716643312,
|
2225 |
+
"mrr@1": 0.6705978514712752,
|
2226 |
+
"mrr@5": 0.7989588198661062,
|
2227 |
+
"mrr@10": 0.7989588198661062,
|
2228 |
+
"num_pred": 8564,
|
2229 |
+
"num_data": 8564
|
2230 |
+
},
|
2231 |
+
"EgoSchema": {
|
2232 |
+
"hit@1": 0.596,
|
2233 |
+
"hit@5": 1.0,
|
2234 |
+
"hit@10": 1.0,
|
2235 |
+
"ndcg_linear@1": 0.596,
|
2236 |
+
"ndcg_linear@5": 0.815692468749886,
|
2237 |
+
"ndcg_linear@10": 0.815692468749886,
|
2238 |
+
"ndcg_exponential@1": 0.596,
|
2239 |
+
"ndcg_exponential@5": 0.815692468749886,
|
2240 |
+
"ndcg_exponential@10": 0.815692468749886,
|
2241 |
+
"precision@1": 0.596,
|
2242 |
+
"precision@5": 0.2,
|
2243 |
+
"precision@10": 0.1,
|
2244 |
+
"recall@1": 0.596,
|
2245 |
+
"recall@5": 1.0,
|
2246 |
+
"recall@10": 1.0,
|
2247 |
+
"f1@1": 0.596,
|
2248 |
+
"f1@5": 0.3333333333333333,
|
2249 |
+
"f1@10": 0.18181818181818182,
|
2250 |
+
"map@1": 0.596,
|
2251 |
+
"map@5": 0.7538333333333332,
|
2252 |
+
"map@10": 0.7538333333333332,
|
2253 |
+
"mrr@1": 0.596,
|
2254 |
+
"mrr@5": 0.7538333333333332,
|
2255 |
+
"mrr@10": 0.7538333333333332,
|
2256 |
+
"num_pred": 500,
|
2257 |
+
"num_data": 500
|
2258 |
+
},
|
2259 |
+
"ActivityNetQA": {
|
2260 |
+
"hit@1": 0.766,
|
2261 |
+
"hit@5": 1.0,
|
2262 |
+
"hit@10": 1.0,
|
2263 |
+
"ndcg_linear@1": 0.766,
|
2264 |
+
"ndcg_linear@5": 0.9136375623357211,
|
2265 |
+
"ndcg_linear@10": 0.9136375623357211,
|
2266 |
+
"ndcg_exponential@1": 0.766,
|
2267 |
+
"ndcg_exponential@5": 0.9136375623357211,
|
2268 |
+
"ndcg_exponential@10": 0.9136375623357211,
|
2269 |
+
"precision@1": 0.766,
|
2270 |
+
"precision@5": 0.20000000000000004,
|
2271 |
+
"precision@10": 0.10000000000000002,
|
2272 |
+
"recall@1": 0.766,
|
2273 |
+
"recall@5": 1.0,
|
2274 |
+
"recall@10": 1.0,
|
2275 |
+
"f1@1": 0.766,
|
2276 |
+
"f1@5": 0.3333333333333333,
|
2277 |
+
"f1@10": 0.18181818181818182,
|
2278 |
+
"map@1": 0.766,
|
2279 |
+
"map@5": 0.883,
|
2280 |
+
"map@10": 0.883,
|
2281 |
+
"mrr@1": 0.766,
|
2282 |
+
"mrr@5": 0.883,
|
2283 |
+
"mrr@10": 0.883,
|
2284 |
+
"num_pred": 1000,
|
2285 |
+
"num_data": 1000
|
2286 |
+
}
|
2287 |
+
}
|
2288 |
+
}
|
2289 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
|
3 |
+
size 11420371
|
tokenizer_config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"extra_special_tokens": {},
|
138 |
+
"model_max_length": 32768,
|
139 |
+
"pad_token": "<|endoftext|>",
|
140 |
+
"padding_side": "left",
|
141 |
+
"processor_class": "Qwen2VLProcessor",
|
142 |
+
"split_special_tokens": false,
|
143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
144 |
+
"unk_token": null
|
145 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|