|
from torch import nn |
|
import numpy as np |
|
import torch |
|
from typing import Tuple, List, Union, Optional |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, GPT2Config |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
N = type(None) |
|
V = np.array |
|
ARRAY = np.ndarray |
|
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] |
|
VS = Union[Tuple[V, ...], List[V]] |
|
VN = Union[V, N] |
|
VNS = Union[VS, N] |
|
T = torch.Tensor |
|
TS = Union[Tuple[T, ...], List[T]] |
|
TN = Optional[T] |
|
TNS = Union[Tuple[TN, ...], List[TN]] |
|
TSN = Optional[TS] |
|
TA = Union[T, ARRAY] |
|
|
|
|
|
D = torch.device |
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def forward(self, x: T) -> T: |
|
return self.model(x) |
|
|
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
|
super(MLP, self).__init__() |
|
layers = [] |
|
for i in range(len(sizes) -1): |
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
|
if i < len(sizes) - 2: |
|
layers.append(act()) |
|
self.model = nn.Sequential(*layers) |
|
|
|
|
|
class ClipCaptionModel(nn.Module): |
|
|
|
|
|
def get_dummy_token(self, batch_size: int, device: D) -> T: |
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
|
|
|
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): |
|
embedding_text = self.gpt.transformer.wte(tokens) |
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
|
|
|
|
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
|
if labels is not None: |
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
|
labels = torch.cat((dummy_token, tokens), dim=1) |
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
|
return out |
|
|
|
def __init__(self, prefix_length: int, prefix_size: int = 512): |
|
super(ClipCaptionModel, self).__init__() |
|
self.prefix_length = prefix_length |
|
self.gpt = GPT2LMHeadModel(GPT2Config.from_pretrained('gpt2')) |
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
|
if prefix_length > 10: |
|
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) |
|
else: |
|
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) |
|
|
|
|
|
class ClipCaptionPrefix(ClipCaptionModel): |
|
|
|
def parameters(self, recurse: bool = True): |
|
return self.clip_project.parameters() |
|
|
|
def train(self, mode: bool = True): |
|
super(ClipCaptionPrefix, self).train(mode) |
|
self.gpt.eval() |
|
return self |
|
|
|
|
|
def generate2( |
|
model, |
|
tokenizer, |
|
tokens=None, |
|
prompt=None, |
|
embed=None, |
|
entry_count=1, |
|
entry_length=67, |
|
top_p=0.8, |
|
temperature=1., |
|
stop_token: str = '.', |
|
): |
|
model.eval() |
|
generated_num = 0 |
|
generated_list = [] |
|
stop_token_index = tokenizer.encode(stop_token)[0] |
|
filter_value = -float("Inf") |
|
device = next(model.parameters()).device |
|
score_col = [] |
|
with torch.no_grad(): |
|
|
|
for entry_idx in range(entry_count): |
|
if embed is not None: |
|
generated = embed |
|
else: |
|
if tokens is None: |
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
|
tokens = tokens.unsqueeze(0).to(device) |
|
|
|
generated = model.gpt.transformer.wte(tokens) |
|
|
|
for i in range(entry_length): |
|
|
|
outputs = model.gpt(inputs_embeds=generated) |
|
logits = outputs.logits |
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ |
|
..., :-1 |
|
].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|
logits[:, indices_to_remove] = filter_value |
|
next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1) |
|
score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item() |
|
score_col.append(score) |
|
next_token_embed = model.gpt.transformer.wte(next_token) |
|
if tokens is None: |
|
tokens = next_token |
|
else: |
|
tokens = torch.cat((tokens, next_token), dim=1) |
|
generated = torch.cat((generated, next_token_embed), dim=1) |
|
if stop_token_index == next_token.item(): |
|
break |
|
|
|
output_list = list(tokens.squeeze(0).cpu().numpy()) |
|
output_text = tokenizer.decode(output_list) |
|
generated_list.append(output_text) |
|
return generated_list[0] |
|
|
|
|
|
@torch.no_grad() |
|
def pc_caption(pc_encoder: torch.nn.Module, pc, cond_scale): |
|
ref_dev = next(pc_encoder.parameters()).device |
|
prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev)) |
|
prefix = prefix.float() * cond_scale |
|
prefix = prefix.to(next(model.parameters()).device) |
|
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) |
|
text = generate2(model, tokenizer, embed=prefix_embed) |
|
return text |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
prefix_length = 10 |
|
model = ClipCaptionModel(prefix_length) |
|
|
|
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt'), map_location='cpu')) |
|
model.eval() |
|
if torch.cuda.is_available(): |
|
model = model.cuda() |
|
|