File size: 3,357 Bytes
808e857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
language:
- en
license: apache-2.0
tags:
- text-to-image
- image-generation
- flux
base_model:
  - black-forest-labs/FLUX.1-schnell
---

# FLUX.1-schnell-fp16-ov

 * Model creator: [Black Forset Labs](https://huggingface.co/black-forest-labs)
 * Original model: [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell)

## Description

This is [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format.

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2025.0.0 and higher
* Optimum Intel 1.23.0 and higher

## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from optimum.intel.openvino import OVDiffusionPipeline

model_id = "OpenVINO/FLUX.1-schnell-fp16-ov"
pipeline = OVDiffusionPipeline.from_pretrained(model_id)

prompt = "A cat holding a sign that says hello world"
images = pipeline(prompt, guidance_scale=0.0, num_inference_steps=4).images
```

## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)

1. Install packages required for using OpenVINO GenAI.
```
pip install huggingface_hub
pip install -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino openvino-tokenizers openvino-genai
```

2. Download model from HuggingFace Hub
   
```
import huggingface_hub as hf_hub

model_id = "OpenVINO/FLUX.1-schnell-fp16-ov"
model_path = "FLUX.1-schnell-fp16-ov"

hf_hub.snapshot_download(model_id, local_dir=model_path)

```

3. Run model inference:

```
import openvino_genai as ov_genai
from PIL import Image

device = "CPU"
pipe = ov_genai.Text2ImagePipeline(model_path, device, guidance_scale=0.0, num_inference_steps=4)

prompt = "A cat holding a sign that says hello world"
image_tensor = pipe.generate(prompt)
image = Image.fromarray(image_tensor.data[0])

```

More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)

## Limitations

Check the original [model card](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for limitations.

## Legal information

The original model is distributed under [Apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) license. More details can be found in [model card](https://huggingface.co/black-forest-labs/FLUX.1-schnell).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.