Last commit not found
# Copyright (c) 2023, salesforce.com, inc. | |
# All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0 | |
"""Tokenization classes for CodeGen2.5.""" | |
from typing import List, Optional | |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | |
from transformers.utils import logging | |
try: | |
import tiktoken | |
except ModuleNotFoundError as e: | |
raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e | |
logger = logging.get_logger(__name__) | |
MAX_MODEL_INPUT_SIZES = { | |
"Salesforce/codegen25-7b-multi": 2048, | |
"Salesforce/codegen25-7b-mono": 2048, | |
"Salesforce/codegen25-7b-instruct": 2048, | |
} | |
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True): | |
if not add_special: | |
return tiktoken.get_encoding(base) | |
def include_whitespace(n_min=2, n_max=20): | |
whitespaces = [" " * n for n in reversed(range(n_min, n_max))] | |
return whitespaces | |
def include_tabs(n_min=2, n_max=20): | |
tabs = ["\t" * n for n in reversed(range(n_min, n_max))] | |
return tabs | |
def include_fim_tokens(): | |
fim_tokens = [ | |
"<fim_prefix>", | |
"<fim_middle>", | |
"<fim_suffix>", | |
"<fim_pad>", | |
"<filename>", | |
"<gh_stars>", | |
"<issue_start>", | |
"<issue_comment>", | |
"<issue_closed>", | |
"<jupyter_start>", | |
"<jupyter_text>", | |
"<jupyter_code>", | |
"<jupyter_output>", | |
"<empty_output>", | |
"<commit_before>", | |
"<commit_msg>", | |
"<commit_after>", | |
"<reponame>" | |
] | |
return fim_tokens | |
def include_codegen2_tokens(): | |
tokens = [] | |
tokens += [f"<dummy_{i}>" for i in range(4)] | |
tokens.append("<sep>") # 50317 | |
tokens.append("<eom>") # 50318 | |
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))] | |
return tokens | |
add_whitespaces = include_whitespace(n_min=2, n_max=32) | |
add_tabs = include_tabs(n_min=2, n_max=10) | |
fim_tokens = include_fim_tokens() | |
codegen2_tokens = include_codegen2_tokens() | |
tokenizer = tiktoken.get_encoding(base) | |
idx = tokenizer.n_vocab | |
bpe_ranks = tokenizer._mergeable_ranks | |
for wsp in add_whitespaces: | |
bpe_ranks[bytes(wsp, 'ascii')] = idx | |
idx += 1 | |
for t in add_tabs: | |
bpe_ranks[bytes(t, 'ascii')] = idx | |
idx += 1 | |
special_tokens = dict() | |
for sp in fim_tokens: | |
special_tokens[sp] = idx | |
idx += 1 | |
for sp in codegen2_tokens: | |
special_tokens[sp] = idx | |
idx += 1 | |
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens: | |
special_tokens[pad_token] = idx | |
idx += 1 | |
# In production, load the arguments directly instead of accessing private attributes | |
# See openai_public.py for examples of arguments for specific encodings | |
enc = tiktoken.Encoding( | |
# If you're changing the set of special tokens, make sure to use a different name | |
# It should be clear from the name what behaviour to expect. | |
name=base.replace("base", "im"), | |
pat_str=tokenizer._pat_str, | |
mergeable_ranks=bpe_ranks, | |
special_tokens={ | |
**tokenizer._special_tokens, | |
**special_tokens | |
} | |
) | |
return enc | |
class CodeGen25Tokenizer(PreTrainedTokenizer): | |
""" | |
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
""" | |
max_model_input_sizes = MAX_MODEL_INPUT_SIZES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
pad_token=None, | |
eos_token="<|endoftext|>", | |
add_eos_token=False, | |
add_special_tokens=True, | |
**kwargs, | |
): | |
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens) | |
super().__init__( | |
pad_token=pad_token_added, | |
eos_token=eos_token_added, | |
add_eos_token=add_eos_token, | |
**kwargs, | |
) | |
self.add_eos_token = add_eos_token | |
def vocab_size(self): | |
"""Returns vocab size""" | |
return self.encoder.n_vocab | |
def get_vocab(self): | |
"""Returns vocab as a dict""" | |
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | |
return vocab | |
def _tokenize(self, text, **kwargs): | |
"""Returns a tokenized string.""" | |
return self.encoder.encode(text, allowed_special="all") | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
if isinstance(token, str): | |
return self.encoder.encode_single_token(token) | |
else: | |
return token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
try: | |
token = self.encoder.decode_single_token_bytes(index).decode("utf-8") | |
except Exception: | |
token = "" | |
return token | |
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs): | |
if skip_special_tokens: | |
token_ids = [t for t in token_ids if t not in self.all_special_ids] | |
return self.encoder.decode(token_ids) | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: | |
"""Build model inputs from a sequence by appending eos_token_id.""" | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = token_ids_0 + eos_token_id | |
if token_ids_1 is not None: | |
output = output + token_ids_1 + eos_token_id | |
return output | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, | |
already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
eos_token_id = [1] if self.add_eos_token else [] | |
if token_ids_1 is None: | |
return ([0] * len(token_ids_0)) + eos_token_id | |
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | |
sequence pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
if token_ids_1 is None, only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of ids. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = [0] * len(token_ids_0 + eos_token_id) | |
if token_ids_1 is not None: | |
output += [1] * len(token_ids_1 + eos_token_id) | |
return output | |
# has no vocab file | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): | |
return () | |