File size: 2,282 Bytes
94f1f10
 
 
 
 
 
 
 
 
 
 
 
 
9d2187c
94f1f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b02afe1
94f1f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
language:
- en
---

# Mistral-7b-Instruct-v0.1-fp16-ov

 * Model creator: [Mistral AI](https://huggingface.co/mistralai)
 * Original model: [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)

## Description

This is [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to FP16.

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.1.0 and higher
* Optimum Intel 1.16.0 and higher

## Running Model Inference

1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM

model_id = "OpenVINO/mistral-7b-instrcut-v0.1-fp16-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)


messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")

outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).

## Limitations

Check the original model card for [limitations](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1#limitations).

## Legal information

The original model is distributed under [Apache 2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).