File size: 2,730 Bytes
26d22a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from transformers import PreTrainedModel, PreTrainedEncoder, PreTrainedDecoder
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.utils import logging

logger = logging.get_logger(__name__)

class CSUMLMEncoder(PreTrainedEncoder):
    def __init__(self, config):
        super().__init__(config)
        # Define the text encoder, image encoder, and audio encoder architectures
        # ...

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        # Implement the forward pass for the encoder
        # ...
        return encoder_outputs

class CSUMLMDecoder(PreTrainedDecoder):
    def __init__(self, config):
        super().__init__(config)
        # Define the decoder architecture
        # ...

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        # Implement the forward pass for the decoder
        # ...
        return decoder_outputs

class CSUMLMModel(PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.encoder = CSUMLMEncoder(config)
        self.decoder = CSUMLMDecoder(config)
        self.multimodal_fusion = MultimodalFusion(config)
        # Initialize other components (e.g., attention mechanism, belief desire intent tree)
        # ...

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        inputs_embeds=None,
        decoder_inputs_embeds=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        # Implement the forward pass for the CSUMLM model
        # ...
        return output

# Register the custom model with Hugging Face Transformers
CSUMLMModel.register_for_auto_class()