Create csumlm.py
Browse files
csumlm.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CognoSphere Unified Multimodal Language Model (CSUMLM)
|
2 |
+
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
# Data Processing
|
9 |
+
class DataProcessor:
|
10 |
+
def __init__(self, data_dir):
|
11 |
+
self.data_dir = data_dir
|
12 |
+
self.text_data = []
|
13 |
+
self.image_data = []
|
14 |
+
self.audio_data = []
|
15 |
+
self.load_data()
|
16 |
+
|
17 |
+
def load_data(self):
|
18 |
+
# Load text data
|
19 |
+
text_files = os.listdir(os.path.join(self.data_dir, 'text'))
|
20 |
+
for file in text_files:
|
21 |
+
with open(os.path.join(self.data_dir, 'text', file), 'r') as f:
|
22 |
+
self.text_data.extend(f.readlines())
|
23 |
+
|
24 |
+
# Load image data
|
25 |
+
image_files = os.listdir(os.path.join(self.data_dir, 'images'))
|
26 |
+
for file in image_files:
|
27 |
+
self.image_data.append(os.path.join(self.data_dir, 'images', file))
|
28 |
+
|
29 |
+
# Load audio data
|
30 |
+
audio_files = os.listdir(os.path.join(self.data_dir, 'audio'))
|
31 |
+
for file in audio_files:
|
32 |
+
self.audio_data.append(os.path.join(self.data_dir, 'audio', file))
|
33 |
+
|
34 |
+
def get_batch(self, batch_size):
|
35 |
+
# Randomly sample data from each modality
|
36 |
+
text_batch = random.sample(self.text_data, batch_size)
|
37 |
+
image_batch = random.sample(self.image_data, batch_size)
|
38 |
+
audio_batch = random.sample(self.audio_data, batch_size)
|
39 |
+
|
40 |
+
return text_batch, image_batch, audio_batch
|
41 |
+
|
42 |
+
# Hybrid Learning Engine
|
43 |
+
class HybridLearningEngine:
|
44 |
+
def __init__(self, data_processor):
|
45 |
+
self.data_processor = data_processor
|
46 |
+
self.model = self.build_model()
|
47 |
+
|
48 |
+
def build_model(self):
|
49 |
+
# Define the model architecture
|
50 |
+
# Combine transfer learning, deep learning, self-supervised learning, meta-learning,
|
51 |
+
# deep meta-learning, reinforcement learning, and cross-domain analogy extraction
|
52 |
+
# ...
|
53 |
+
|
54 |
+
return model
|
55 |
+
|
56 |
+
def train(self, epochs, batch_size):
|
57 |
+
for epoch in range(epochs):
|
58 |
+
text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size)
|
59 |
+
|
60 |
+
# Train the model on the batch
|
61 |
+
# ...
|
62 |
+
|
63 |
+
# Advanced Attention Mechanism
|
64 |
+
class AttentionMechanism:
|
65 |
+
def __init__(self):
|
66 |
+
self.traditional_attention = TraditionalAttention()
|
67 |
+
self.self_attention = SelfAttention()
|
68 |
+
self.linear_attention = LinearAttention()
|
69 |
+
|
70 |
+
def apply_attention(self, inputs):
|
71 |
+
# Combine traditional attention, self-attention, and linear attention
|
72 |
+
# ...
|
73 |
+
|
74 |
+
return attended_inputs
|
75 |
+
|
76 |
+
# Hierarchical Belief Desire Intent Tree/Chain of Thought Structure
|
77 |
+
class BeliefDesireIntentTree:
|
78 |
+
def __init__(self):
|
79 |
+
self.root = None
|
80 |
+
|
81 |
+
def build_tree(self, inputs):
|
82 |
+
# Construct the Belief Desire Intent Tree/Chain of Thought Structure
|
83 |
+
# ...
|
84 |
+
|
85 |
+
return self.root
|
86 |
+
|
87 |
+
# Modular Python Architecture
|
88 |
+
class CSUMLM:
|
89 |
+
def __init__(self, data_dir):
|
90 |
+
self.data_processor = DataProcessor(data_dir)
|
91 |
+
self.learning_engine = HybridLearningEngine(self.data_processor)
|
92 |
+
self.attention_mechanism = AttentionMechanism()
|
93 |
+
self.belief_desire_intent_tree = BeliefDesireIntentTree()
|
94 |
+
|
95 |
+
def train(self, epochs, batch_size):
|
96 |
+
self.learning_engine.train(epochs, batch_size)
|
97 |
+
|
98 |
+
def process_input(self, inputs):
|
99 |
+
# Preprocess inputs
|
100 |
+
# ...
|
101 |
+
|
102 |
+
# Apply attention mechanism
|
103 |
+
attended_inputs = self.attention_mechanism.apply_attention(inputs)
|
104 |
+
|
105 |
+
# Build Belief Desire Intent Tree/Chain of Thought Structure
|
106 |
+
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
|
107 |
+
|
108 |
+
# Generate output based on the tree
|
109 |
+
# ...
|
110 |
+
|
111 |
+
return output
|
112 |
+
|
113 |
+
# Real-time Learning Mechanisms
|
114 |
+
class RealtimeLearningMechanism:
|
115 |
+
def __init__(self, model):
|
116 |
+
self.model = model
|
117 |
+
|
118 |
+
def update_model(self, new_data):
|
119 |
+
# Update the model with new data
|
120 |
+
# ...
|
121 |
+
|
122 |
+
# Dynamic Knowledge Base
|
123 |
+
class DynamicKnowledgeBase:
|
124 |
+
def __init__(self):
|
125 |
+
self.knowledge_base = {}
|
126 |
+
|
127 |
+
def update_knowledge_base(self, new_knowledge):
|
128 |
+
# Update the knowledge base with new linguistic and multimodal patterns
|
129 |
+
# ...
|
130 |
+
|
131 |
+
# Explainability and Transparency
|
132 |
+
class Explainer:
|
133 |
+
def __init__(self, model):
|
134 |
+
self.model = model
|
135 |
+
|
136 |
+
def explain_prediction(self, inputs):
|
137 |
+
# Generate explanations for model predictions and responses
|
138 |
+
# ...
|
139 |
+
|
140 |
+
return explanation
|
141 |
+
|
142 |
+
# Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL)
|
143 |
+
class IRAGEL:
|
144 |
+
def __init__(self, model, knowledge_base):
|
145 |
+
self.model = model
|
146 |
+
self.knowledge_base = knowledge_base
|
147 |
+
|
148 |
+
def retrieve_or_generate(self, inputs):
|
149 |
+
# Retrieve or generate additional linguistic and multimodal data
|
150 |
+
# ...
|
151 |
+
|
152 |
+
return augmented_inputs
|
153 |
+
|
154 |
+
def reflect_and_improve(self, inputs, outputs):
|
155 |
+
# Reflect on generated logic and improve decision-making processes
|
156 |
+
# ...
|
157 |
+
|
158 |
+
return improved_outputs
|
159 |
+
|
160 |
+
def self_train(self, inputs, outputs):
|
161 |
+
# Implement self-training for continuous performance enhancement
|
162 |
+
# ...
|
163 |
+
|
164 |
+
# Main CSUMLM Class
|
165 |
+
class CSUMLM:
|
166 |
+
def __init__(self, data_dir):
|
167 |
+
self.data_processor = DataProcessor(data_dir)
|
168 |
+
self.learning_engine = HybridLearningEngine(self.data_processor)
|
169 |
+
self.attention_mechanism = AttentionMechanism()
|
170 |
+
self.belief_desire_intent_tree = BeliefDesireIntentTree()
|
171 |
+
self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model)
|
172 |
+
self.knowledge_base = DynamicKnowledgeBase()
|
173 |
+
self.explainer = Explainer(self.learning_engine.model)
|
174 |
+
self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base)
|
175 |
+
|
176 |
+
def train(self, epochs, batch_size):
|
177 |
+
self.learning_engine.train(epochs, batch_size)
|
178 |
+
|
179 |
+
def process_input(self, inputs):
|
180 |
+
# Preprocess inputs
|
181 |
+
# ...
|
182 |
+
|
183 |
+
# Apply attention mechanism
|
184 |
+
attended_inputs = self.attention_mechanism.apply_attention(inputs)
|
185 |
+
|
186 |
+
# Build Belief Desire Intent Tree/Chain of Thought Structure
|
187 |
+
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
|
188 |
+
|
189 |
+
# Retrieve or generate additional data
|
190 |
+
augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs)
|
191 |
+
|
192 |
+
# Generate output based on the tree and augmented inputs
|
193 |
+
outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree)
|
194 |
+
|
195 |
+
# Reflect and improve outputs
|
196 |
+
improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs)
|
197 |
+
|
198 |
+
# Explain predictions
|
199 |
+
explanation = self.explainer.explain_prediction(improved_outputs)
|
200 |
+
|
201 |
+
# Update knowledge base and model
|
202 |
+
self.knowledge_base.update_knowledge_base(new_knowledge)
|
203 |
+
self.realtime_learning_mechanism.update_model(new_data)
|
204 |
+
|
205 |
+
# Self-train the model
|
206 |
+
self.iragel.self_train(augmented_inputs, improved_outputs)
|
207 |
+
|
208 |
+
return improved_outputs, explanation
|