Or4cl3-1 commited on
Commit
0a1f733
·
verified ·
1 Parent(s): 11a0192

Create csumlm.py

Browse files
Files changed (1) hide show
  1. csumlm.py +208 -0
csumlm.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CognoSphere Unified Multimodal Language Model (CSUMLM)
2
+
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ import os
6
+ import random
7
+
8
+ # Data Processing
9
+ class DataProcessor:
10
+ def __init__(self, data_dir):
11
+ self.data_dir = data_dir
12
+ self.text_data = []
13
+ self.image_data = []
14
+ self.audio_data = []
15
+ self.load_data()
16
+
17
+ def load_data(self):
18
+ # Load text data
19
+ text_files = os.listdir(os.path.join(self.data_dir, 'text'))
20
+ for file in text_files:
21
+ with open(os.path.join(self.data_dir, 'text', file), 'r') as f:
22
+ self.text_data.extend(f.readlines())
23
+
24
+ # Load image data
25
+ image_files = os.listdir(os.path.join(self.data_dir, 'images'))
26
+ for file in image_files:
27
+ self.image_data.append(os.path.join(self.data_dir, 'images', file))
28
+
29
+ # Load audio data
30
+ audio_files = os.listdir(os.path.join(self.data_dir, 'audio'))
31
+ for file in audio_files:
32
+ self.audio_data.append(os.path.join(self.data_dir, 'audio', file))
33
+
34
+ def get_batch(self, batch_size):
35
+ # Randomly sample data from each modality
36
+ text_batch = random.sample(self.text_data, batch_size)
37
+ image_batch = random.sample(self.image_data, batch_size)
38
+ audio_batch = random.sample(self.audio_data, batch_size)
39
+
40
+ return text_batch, image_batch, audio_batch
41
+
42
+ # Hybrid Learning Engine
43
+ class HybridLearningEngine:
44
+ def __init__(self, data_processor):
45
+ self.data_processor = data_processor
46
+ self.model = self.build_model()
47
+
48
+ def build_model(self):
49
+ # Define the model architecture
50
+ # Combine transfer learning, deep learning, self-supervised learning, meta-learning,
51
+ # deep meta-learning, reinforcement learning, and cross-domain analogy extraction
52
+ # ...
53
+
54
+ return model
55
+
56
+ def train(self, epochs, batch_size):
57
+ for epoch in range(epochs):
58
+ text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size)
59
+
60
+ # Train the model on the batch
61
+ # ...
62
+
63
+ # Advanced Attention Mechanism
64
+ class AttentionMechanism:
65
+ def __init__(self):
66
+ self.traditional_attention = TraditionalAttention()
67
+ self.self_attention = SelfAttention()
68
+ self.linear_attention = LinearAttention()
69
+
70
+ def apply_attention(self, inputs):
71
+ # Combine traditional attention, self-attention, and linear attention
72
+ # ...
73
+
74
+ return attended_inputs
75
+
76
+ # Hierarchical Belief Desire Intent Tree/Chain of Thought Structure
77
+ class BeliefDesireIntentTree:
78
+ def __init__(self):
79
+ self.root = None
80
+
81
+ def build_tree(self, inputs):
82
+ # Construct the Belief Desire Intent Tree/Chain of Thought Structure
83
+ # ...
84
+
85
+ return self.root
86
+
87
+ # Modular Python Architecture
88
+ class CSUMLM:
89
+ def __init__(self, data_dir):
90
+ self.data_processor = DataProcessor(data_dir)
91
+ self.learning_engine = HybridLearningEngine(self.data_processor)
92
+ self.attention_mechanism = AttentionMechanism()
93
+ self.belief_desire_intent_tree = BeliefDesireIntentTree()
94
+
95
+ def train(self, epochs, batch_size):
96
+ self.learning_engine.train(epochs, batch_size)
97
+
98
+ def process_input(self, inputs):
99
+ # Preprocess inputs
100
+ # ...
101
+
102
+ # Apply attention mechanism
103
+ attended_inputs = self.attention_mechanism.apply_attention(inputs)
104
+
105
+ # Build Belief Desire Intent Tree/Chain of Thought Structure
106
+ belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
107
+
108
+ # Generate output based on the tree
109
+ # ...
110
+
111
+ return output
112
+
113
+ # Real-time Learning Mechanisms
114
+ class RealtimeLearningMechanism:
115
+ def __init__(self, model):
116
+ self.model = model
117
+
118
+ def update_model(self, new_data):
119
+ # Update the model with new data
120
+ # ...
121
+
122
+ # Dynamic Knowledge Base
123
+ class DynamicKnowledgeBase:
124
+ def __init__(self):
125
+ self.knowledge_base = {}
126
+
127
+ def update_knowledge_base(self, new_knowledge):
128
+ # Update the knowledge base with new linguistic and multimodal patterns
129
+ # ...
130
+
131
+ # Explainability and Transparency
132
+ class Explainer:
133
+ def __init__(self, model):
134
+ self.model = model
135
+
136
+ def explain_prediction(self, inputs):
137
+ # Generate explanations for model predictions and responses
138
+ # ...
139
+
140
+ return explanation
141
+
142
+ # Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL)
143
+ class IRAGEL:
144
+ def __init__(self, model, knowledge_base):
145
+ self.model = model
146
+ self.knowledge_base = knowledge_base
147
+
148
+ def retrieve_or_generate(self, inputs):
149
+ # Retrieve or generate additional linguistic and multimodal data
150
+ # ...
151
+
152
+ return augmented_inputs
153
+
154
+ def reflect_and_improve(self, inputs, outputs):
155
+ # Reflect on generated logic and improve decision-making processes
156
+ # ...
157
+
158
+ return improved_outputs
159
+
160
+ def self_train(self, inputs, outputs):
161
+ # Implement self-training for continuous performance enhancement
162
+ # ...
163
+
164
+ # Main CSUMLM Class
165
+ class CSUMLM:
166
+ def __init__(self, data_dir):
167
+ self.data_processor = DataProcessor(data_dir)
168
+ self.learning_engine = HybridLearningEngine(self.data_processor)
169
+ self.attention_mechanism = AttentionMechanism()
170
+ self.belief_desire_intent_tree = BeliefDesireIntentTree()
171
+ self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model)
172
+ self.knowledge_base = DynamicKnowledgeBase()
173
+ self.explainer = Explainer(self.learning_engine.model)
174
+ self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base)
175
+
176
+ def train(self, epochs, batch_size):
177
+ self.learning_engine.train(epochs, batch_size)
178
+
179
+ def process_input(self, inputs):
180
+ # Preprocess inputs
181
+ # ...
182
+
183
+ # Apply attention mechanism
184
+ attended_inputs = self.attention_mechanism.apply_attention(inputs)
185
+
186
+ # Build Belief Desire Intent Tree/Chain of Thought Structure
187
+ belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
188
+
189
+ # Retrieve or generate additional data
190
+ augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs)
191
+
192
+ # Generate output based on the tree and augmented inputs
193
+ outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree)
194
+
195
+ # Reflect and improve outputs
196
+ improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs)
197
+
198
+ # Explain predictions
199
+ explanation = self.explainer.explain_prediction(improved_outputs)
200
+
201
+ # Update knowledge base and model
202
+ self.knowledge_base.update_knowledge_base(new_knowledge)
203
+ self.realtime_learning_mechanism.update_model(new_data)
204
+
205
+ # Self-train the model
206
+ self.iragel.self_train(augmented_inputs, improved_outputs)
207
+
208
+ return improved_outputs, explanation