--- tags: - merge - mergekit - lazymergekit - microsoft/codebert-base - EleutherAI/gpt-neo-x-20b - openai/codex - bigscience/bloom - google/jurassic-1-jumbo - google/t5-v1_1-large - facebook/bart-large base_model: - microsoft/codebert-base - EleutherAI/gpt-neo-x-20b - openai/codex - bigscience/bloom - google/jurassic-1-jumbo - google/t5-v1_1-large - facebook/bart-large --- # code-slerp code-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) * [EleutherAI/gpt-neo-x-20b](https://huggingface.co/EleutherAI/gpt-neo-x-20b) * [openai/codex](https://huggingface.co/openai/codex) * [bigscience/bloom](https://huggingface.co/bigscience/bloom) * [google/jurassic-1-jumbo](https://huggingface.co/google/jurassic-1-jumbo) * [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) * [facebook/bart-large](https://huggingface.co/facebook/bart-large) ## 🧩 Configuration ```yaml slices: - sources: - model: microsoft/codebert-base layer_range: [0, 32] - model: EleutherAI/gpt-neo-x-20b layer_range: [0, 32] - model: openai/codex layer_range: [0, 32] - model: bigscience/bloom layer_range: [0, 32] - model: google/jurassic-1-jumbo layer_range: [0, 32] - model: google/t5-v1_1-large layer_range: [0, 32] - model: facebook/bart-large layer_range: [0, 32] merge_method: slerp base_model: microsoft/codebert-base parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat1 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Or4cl3-1/code-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```