PEFT
Safetensors
English
micheleriva commited on
Commit
f335f40
·
verified ·
1 Parent(s): 52b665f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +183 -187
README.md CHANGED
@@ -1,202 +1,198 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-7B
3
  library_name: peft
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.14.0
 
1
  ---
2
  base_model: Qwen/Qwen2.5-7B
3
  library_name: peft
4
+ language:
5
+ - en
6
+ license: agpl-3.0
7
+ datasets:
8
+ - OramaSearch/nlp-to-query-small
9
  ---
10
 
11
+ # Query Translator Mini
 
 
12
 
13
+ This repository contains a fine-tuned version of Qwen 2.5 7B model specialized in translating natural language queries into structured Orama search queries.
14
 
15
+ The model uses PEFT with LoRA to maintain efficiency while achieving high performance.
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
+ The Query Translator Mini model is designed to convert natural language queries into structured JSON queries compatible with the Orama search engine.
22
+
23
+ It understands various data types and query operators, making it versatile for different search scenarios.
24
+
25
+ ### Key Features
26
+
27
+ - Translates natural language to structured Orama queries
28
+ - Supports multiple field types: string, number, boolean, enum, and arrays
29
+ - Handles complex query operators: `gt`, `gte`, `lt`, `lte`, `eq`, `between`, `containsAll`
30
+ - Supports nested properties with dot notation
31
+ - Works with both full-text search and filtered queries
32
+
33
+ ## Usage
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+ from peft import PeftModel
38
+
39
+ # Load the model and tokenizer
40
+ model_name = "your-username/query-translator-mini"
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+ model = AutoModelForCausalLM.from_pretrained(model_name)
43
+
44
+ # System Prompt used during training
45
+ SYSTEM_PROMPT = """
46
+ You are a tool used to generate synthetic data of Orama queries. Orama is a full-text, vector, and hybrid search engine.
47
+
48
+ Let me show you what you need to do with some examples.
49
+
50
+ Example:
51
+ - Query: `"What are the red wines that cost less than 20 dollars?"`
52
+ - Schema: `{ "name": "string", "content": "string", "price": "number", "tags": "enum[]" }`
53
+ - Generated query: `{ "term": "", "where": { "tags": { "containsAll": ["red", "wine"] }, "price": { "lt": 20 } } }`
54
+
55
+ Another example:
56
+ - Query: `"Show me 5 prosecco wines good for aperitif"`
57
+ - Schema: `{ "name": "string", "content": "string", "price": "number", "tags": "enum[]" }`
58
+ - Generated query: `{ "term": "prosecco aperitif", "limit": 5 }`
59
+
60
+ One last example:
61
+ - Query: `"Show me some wine reviews with a score greater than 4.5 and less than 5.0."`
62
+ - Schema: `{ "title": "string", "content": "string", "reviews": { "score": "number", "text": "string" } }]`
63
+ - Generated query: `{ "term": "", "where": { "reviews.score": { "between": [4.5, 5.0] } } }`
64
+
65
+ The rules to generate the query are:
66
+
67
+ - Never use an "embedding" field in the schema.
68
+ - Every query has a "term" field that is a string. It represents the full-text search terms. Can be empty (will match all documents).
69
+ - You can use a "where" field that is an object. It represents the filters to apply to the documents. Its keys and values depend on the schema of the database:
70
+ - If the field is a "string", you should not use operators. Example: `{ "where": { "title": "champagne" } }`.
71
+ - If the field is a "number", you can use the following operators: "gt", "gte", "lt", "lte", "eq", "between". Example: `{ "where": { "price": { "between": [20, 100] } } }`. Another example: `{ "where": { "price": { "lt": 20 } } }`.
72
+ - If the field is an "enum", you can use the following operators: "eq", "in", "nin". Example: `{ "where": { "tags": { "containsAll": ["red", "wine"] } } }`.
73
+ - If the field is an "string[]", it's gonna be just like the "string" field, but you can use an array of values. Example: `{ "where": { "title": ["champagne", "montagne"] } }`.
74
+ - If the field is a "boolean", you can use the following operators: "eq". Example: `{ "where": { "isAvailable": true } }`. Another example: `{ "where": { "isAvailable": false } }`.
75
+ - If the field is a "enum[]", you can use the following operators: "containsAll". Example: `{ "where": { "tags": { "containsAll": ["red", "wine"] } } }`.
76
+ - Nested properties are supported. Just translate them into dot notation. Example: `{ "where": { "author.name": "John" } }`.
77
+ - Array of numbers are not supported.
78
+ - Array of booleans are not supported.
79
+ """
80
+
81
+ # Example query
82
+ query = "What are the red wines that cost less than 20 dollars?"
83
+
84
+ # Orama schema
85
+ schema = {
86
+ "name": "string",
87
+ "content": "string",
88
+ "price": "number",
89
+ "tags": "enum[]"
90
+ }
91
+
92
+ # Generate structured query
93
+ messages = [
94
+ {"role": "system", "content": SYSTEM_PROMPT},
95
+ {"role": "user", "content": f"Query: {query}\nSchema: {json.dumps(schema)}"},
96
+ ]
97
+
98
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
99
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
100
+ outputs = model.generate(
101
+ **inputs,
102
+ max_length=512,
103
+ temperature=0.1,
104
+ top_p=0.9,
105
+ num_return_sequences=1,
106
+ )
107
+
108
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
109
+ ```
110
 
111
  ## Training Details
112
 
113
+ The model was trained on a NVIDIA H100 SXM using the following configuration:
114
+
115
+ - Base Model: Qwen 2.5 7B
116
+ - Training Method: LoRA
117
+ - Quantization: 4-bit quantization using bitsandbytes
118
+ - LoRA Configuration:
119
+ - Rank: 16
120
+ - Alpha: 32
121
+ - Dropout: 0.1
122
+ - Target Modules: Attention layers and MLP
123
+
124
+ - Training Arguments:
125
+ - Epochs: 3
126
+ - Batch Size: 2
127
+ - Learning Rate: 5e-5
128
+ - Gradient Accumulation Steps: 8
129
+ - FP16 Training: Enabled
130
+ - Gradient Checkpointing: Enabled
131
+
132
+ ## Supported Query Types
133
+
134
+ The model can handle various types of queries including:
135
+
136
+ 1. Simple text search:
137
+
138
+ ```json
139
+ {
140
+ "term": "prosecco aperitif",
141
+ "limit": 5
142
+ }
143
+ ```
144
+
145
+ 2. Numeric range queries:
146
+
147
+ ```json
148
+ {
149
+ "term": "",
150
+ "where": {
151
+ "price": {
152
+ "between": [20, 100]
153
+ }
154
+ }
155
+ }
156
+ ```
157
+
158
+ 3. Tag-based filtering:
159
+
160
+ ```json
161
+ {
162
+ "term": "",
163
+ "where": {
164
+ "tags": {
165
+ "containsAll": ["red", "wine"]
166
+ }
167
+ }
168
+ }
169
+ ```
170
+
171
+ ## Limitations
172
+
173
+ - Does not support array of numbers or booleans
174
+ - Maximum input length is 1024 tokens
175
+ - Embedding fields are not supported in the schema
176
+
177
+ ## Citation
178
+
179
+ If you use this model in your research, please cite:
180
+
181
+ ```
182
+ @misc{query-translator-mini,
183
+ author = {OramaSearch Inc.},
184
+ title = {Query Translator Mini: Natural Language to Orama Query Translation},
185
+ year = {2024},
186
+ publisher = {HuggingFace},
187
+ journal = {HuggingFace Repository},
188
+ howpublished = {\url{https://huggingface.co/OramaSearch/query-translator-mini}}
189
+ }
190
+ ```
191
+
192
+ ## License
193
+
194
+ AGPLv3
195
+
196
+ ## Acknowledgments
197
+
198
+ This model builds upon the Qwen 2.5 7B model and uses techniques from the PEFT library. Special thanks to the teams behind these projects.