File size: 2,828 Bytes
1c85345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: distilbert-finetuned-headings
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-finetuned-headings

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1669
- F1 Positive: 0.9112
- F1 Negative: 0.9854
- F1: 0.9749
- Roc Auc: 0.9457
- Accuracy: 0.9749

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Positive | F1 Negative | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|:-----------:|:------:|:-------:|:--------:|
| 0.1869        | 1.0   | 1785  | 0.1452          | 0.8621      | 0.9793      | 0.9640 | 0.8922  | 0.9640   |
| 0.1306        | 2.0   | 3570  | 0.1190          | 0.8738      | 0.9807      | 0.9665 | 0.9031  | 0.9665   |
| 0.1182        | 3.0   | 5355  | 0.1460          | 0.8831      | 0.9818      | 0.9685 | 0.9137  | 0.9685   |
| 0.0841        | 4.0   | 7140  | 0.1431          | 0.8990      | 0.9844      | 0.9730 | 0.9201  | 0.9730   |
| 0.061         | 5.0   | 8925  | 0.1540          | 0.9066      | 0.9846      | 0.9736 | 0.9431  | 0.9736   |
| 0.0381        | 6.0   | 10710 | 0.1630          | 0.9070      | 0.9851      | 0.9743 | 0.9359  | 0.9743   |
| 0.0268        | 7.0   | 12495 | 0.1669          | 0.9112      | 0.9854      | 0.9749 | 0.9457  | 0.9749   |
| 0.024         | 8.0   | 14280 | 0.2216          | 0.8964      | 0.9827      | 0.9704 | 0.9412  | 0.9704   |
| 0.0182        | 9.0   | 16065 | 0.2294          | 0.9032      | 0.9843      | 0.9730 | 0.9371  | 0.9730   |
| 0.0176        | 10.0  | 17850 | 0.2239          | 0.9057      | 0.9847      | 0.9736 | 0.9393  | 0.9736   |
| 0.0197        | 11.0  | 19635 | 0.2441          | 0.8966      | 0.9832      | 0.9710 | 0.9340  | 0.9710   |
| 0.0128        | 12.0  | 21420 | 0.2541          | 0.8899      | 0.9820      | 0.9691 | 0.9310  | 0.9691   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1