Add new SentenceTransformer model
Browse files- README.md +49 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +8 -0
- preprocessor_config.json +28 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +31 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
+
---
|
9 |
+
|
10 |
+
# clip-ViT-L-14
|
11 |
+
|
12 |
+
This is the Image & Text model [CLIP](https://arxiv.org/abs/2103.00020), which maps text and images to a shared vector space. For applications of the models, have a look in our documentation [SBERT.net - Image Search](https://www.sbert.net/examples/applications/image-search/README.html)
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
After installing [sentence-transformers](https://sbert.net) (`pip install sentence-transformers`), the usage of this model is easy:
|
17 |
+
|
18 |
+
|
19 |
+
```python
|
20 |
+
from sentence_transformers import SentenceTransformer, util
|
21 |
+
from PIL import Image
|
22 |
+
|
23 |
+
#Load CLIP model
|
24 |
+
model = SentenceTransformer('clip-ViT-L-14')
|
25 |
+
|
26 |
+
#Encode an image:
|
27 |
+
img_emb = model.encode(Image.open('two_dogs_in_snow.jpg'))
|
28 |
+
|
29 |
+
#Encode text descriptions
|
30 |
+
text_emb = model.encode(['Two dogs in the snow', 'A cat on a table', 'A picture of London at night'])
|
31 |
+
|
32 |
+
#Compute cosine similarities
|
33 |
+
cos_scores = util.cos_sim(img_emb, text_emb)
|
34 |
+
print(cos_scores)
|
35 |
+
```
|
36 |
+
|
37 |
+
See our [SBERT.net - Image Search](https://www.sbert.net/examples/applications/image-search/README.html) documentation for more examples how the model can be used for image search, zero-shot image classification, image clustering and image deduplication.
|
38 |
+
|
39 |
+
## Performance
|
40 |
+
|
41 |
+
In the following table we find the zero-shot ImageNet validation set accuracy:
|
42 |
+
|
43 |
+
| Model | Top 1 Performance |
|
44 |
+
| --- | :---: |
|
45 |
+
| [clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32) | 63.3 |
|
46 |
+
| [clip-ViT-B-16](https://huggingface.co/sentence-transformers/clip-ViT-B-16) | 68.1 |
|
47 |
+
| [clip-ViT-L-14](https://huggingface.co/sentence-transformers/clip-ViT-L-14) | 75.4 |
|
48 |
+
|
49 |
+
For a multilingual version of the CLIP model for 50+ languages have a look at: [clip-ViT-B-32-multilingual-v1](https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/Users/mrloh/.cache/huggingface/hub/models--sentence-transformers--clip-ViT-L-14/snapshots/3b12140ad0f9750045e404f187cfccd04bcaf250/0_CLIPModel",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPModel"
|
5 |
+
],
|
6 |
+
"initializer_factor": 1.0,
|
7 |
+
"logit_scale_init_value": 2.6592,
|
8 |
+
"model_type": "clip",
|
9 |
+
"projection_dim": 768,
|
10 |
+
"text_config": {
|
11 |
+
"dropout": 0.0,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"model_type": "clip_text_model",
|
15 |
+
"num_attention_heads": 12
|
16 |
+
},
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.46.0",
|
19 |
+
"vision_config": {
|
20 |
+
"dropout": 0.0,
|
21 |
+
"hidden_size": 1024,
|
22 |
+
"intermediate_size": 4096,
|
23 |
+
"model_type": "clip_vision_model",
|
24 |
+
"num_attention_heads": 16,
|
25 |
+
"num_hidden_layers": 24,
|
26 |
+
"patch_size": 14
|
27 |
+
}
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.1",
|
4 |
+
"transformers": "4.46.0",
|
5 |
+
"pytorch": "2.5.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41d974e3760ed5e9deb912c9c811ef8edf25ca61152a4cf6bb4de785371f15aa
|
3 |
+
size 1710537716
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.CLIPModel"
|
7 |
+
}
|
8 |
+
]
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"processor_class": "CLIPProcessor",
|
23 |
+
"resample": 3,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"shortest_edge": 224
|
27 |
+
}
|
28 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": false,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"processor_class": "CLIPProcessor",
|
29 |
+
"tokenizer_class": "CLIPTokenizer",
|
30 |
+
"unk_token": "<|endoftext|>"
|
31 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|