ppo-LunarLander-v2 / config.json
Orion181's picture
Init of LunarLander HuggingFace RL tutorial
79b48ee verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc771b1d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc771b1e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc771b1ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc771b1f30>", "_build": "<function ActorCriticPolicy._build at 0x7fbc771b1fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc771b2050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbc771b20e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc771b2170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc771b2200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc771b2290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc771b2320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc771b23b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbc19baf780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728106875719968125, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2ZPb0poAS6Tlm5ue8szrXadqG5U/DVOAAAgD8AAIA/WPSDvpWkiz/O5W6+TBDxvrERhL6tuKS9AAAAAAAAAADadOs962iEPkE9O75f0GS+fBEgu7XZTL0AAAAAAAAAALpjPT7rt/g+pXhcvi82ib5Bh4g8lQQDuwAAAAAAAAAAM5vSvAh7yD3+A629m0JkvpXEzL1obte7AAAAAAAAAABGMV2+UUBZP3RxKb6Nd86+8zk3viJLfj0AAAAAAAAAAACgH72u+ba6qdustktal7HIngc6bojFNQAAgD8AAIA/wGwmPm7n/j54CvG9XAKIvmWk4jkTA2e8AAAAAAAAAABTpBy+BDucP2nuCb8DTNK+rJ5XvrYBh74AAAAAAAAAAJqMDT45YuE+qMt2vhfEjL4nlsu9/RwDPQAAAAAAAAAAQEMUvnxpsz4GSEY+Y7Bgvu4PFz0WnDy9AAAAAAAAAAAAhq+9yP/ZPsasUDze8IG+8i3uvN3XcDwAAAAAAAAAABpmqL1Hgm0/e9fevc9dyL5W5r69Bc6dOwAAAAAAAAAAGvQKvaMxrT9VvFW+O3iqvoMfDr01NoS9AAAAAAAAAACaXzO8lXguP9hNgb3rBJK+bpJJvGIeHD0AAAAAAAAAAGYmgLtIiYu6ghinuvHBhrVfdTe7l9vBOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAPUZJkGzOMAWyUTQ0BjAF0lEdAm2RXAdn003V9lChoBkdAcsj/lhgE2mgHTT4BaAhHQJtngvnKW9l1fZQoaAZHQHD4hn8KohpoB00TAWgIR0CbZ/MI/qxDdX2UKGgGR0BsRpb6guh9aAdNQgFoCEdAm44sBQvYe3V9lChoBkdAa91+glF+eGgHTR8CaAhHQJuQAExIre91fZQoaAZHQHOO3ryDqW1oB00QAmgIR0CbkKGJvYOEdX2UKGgGR0Bv0zoGIKtxaAdNkAFoCEdAm5EL0voNeHV9lChoBkdAcfzyzHCGe2gHTbUBaAhHQJuRfPWxyGV1fZQoaAZHQHKKETYdyT9oB01pAWgIR0CbksLtNSIhdX2UKGgGR0ByHi4RVZLaaAdNXwFoCEdAm5MLo4dZJXV9lChoBkdAbavk3juKGmgHTS0BaAhHQJuVrnlnyup1fZQoaAZHQHHyJxR2r4poB00eAWgIR0CblzyjYZl4dX2UKGgGR0BwzNq+JxecaAdNRAFoCEdAm5dMbFS88XV9lChoBkdAcCz5sTFl1GgHTWkBaAhHQJuYUyP+4sp1fZQoaAZHQHAk0ulGgBdoB01BAWgIR0CbmIfhuO0cdX2UKGgGR0BzFhGSZBszaAdNTAJoCEdAm5ibSiM5wXV9lChoBkdAS5xLsa86FWgHS9ZoCEdAm5qeQ+2VmnV9lChoBkdAcRssFdLQHGgHTakBaAhHQJubsvN/vv11fZQoaAZHQHIQav3ai9JoB01SAWgIR0CbnFpVS4vwdX2UKGgGR0BxHVAlfJFLaAdNNAFoCEdAm524+W4Vh3V9lChoBkdAcgKYoy9EkWgHTZEBaAhHQJufKoCMglp1fZQoaAZHQHDeEdvKlpJoB00PAWgIR0Cbn+U7Sy+pdX2UKGgGR0Bt74PTXrdFaAdNTgFoCEdAm6EYFmnO0XV9lChoBkdAcIad92HLzWgHTUsBaAhHQJuhT6N2ki51fZQoaAZHQHLtIwZflZJoB01FAWgIR0CbotniNsFddX2UKGgGR0BvOXrUsnRcaAdNoQFoCEdAm6Z75ZbILnV9lChoBkdAbzcjcmBvrGgHTSUBaAhHQJunGjvd/KB1fZQoaAZHQHDv5NTLns9oB00+AWgIR0Cbp4ctoSL7dX2UKGgGR0BxiMPd2xIKaAdNWwFoCEdAm6vJgssg+3V9lChoBkdAbY9N34bjtGgHTS8BaAhHQJusQcvM8ox1fZQoaAZHQHI3JmyxA0NoB01jAWgIR0CbrEdPLxI8dX2UKGgGR0Bv5ObExZdOaAdNGwFoCEdAm61y9h7VrnV9lChoBkdAclRbZezD42gHTa8BaAhHQJut4YoAn2J1fZQoaAZHQG8wiRGMGX5oB00gAWgIR0Cbr8XAdn01dX2UKGgGR0ByZ5oh6jWTaAdNVAFoCEdAm7CORxLkCHV9lChoBkdAcLQ+9alk6WgHTb4BaAhHQJuw7maH9FZ1fZQoaAZHQHEpiIHkcS5oB00jAWgIR0CbsczPKMefdX2UKGgGR0BwPQ5p8F6iaAdNHAFoCEdAm7YK46Oo53V9lChoBkdAcglh99c8kmgHTWcBaAhHQJu4Cnm7rcF1fZQoaAZHQHBTxXjlxOtoB00MAWgIR0CbuMWJ79hrdX2UKGgGR0Bt9wZGax5caAdNhAFoCEdAm7m/47A+IXV9lChoBkdAbuKzsQd0aWgHTb8BaAhHQJu7W4QSSNh1fZQoaAZHQHABFnuiN85oB01CAWgIR0Cbu+Ehq0tzdX2UKGgGR0BuxHZTQ3PzaAdNWgFoCEdAm7zHQ+lj3HV9lChoBkdAblZB1LamGmgHTUIBaAhHQJu/Ge18b711fZQoaAZHQHGsKMm4RVZoB00DAWgIR0Cbv0iGFi8WdX2UKGgGR0BJbcUVSGahaAdNCQFoCEdAm7/xwAEMb3V9lChoBkdAbTPjMmnfmGgHTSEBaAhHQJvAaVbA1vV1fZQoaAZHQG4wU2UB4lhoB01VAWgIR0CbwKLqlgtwdX2UKGgGR0BtzNUhmoR7aAdNhQFoCEdAm8Lsvh60IHV9lChoBkdAcj8vw3HaOGgHTVcBaAhHQJvE3FId2gZ1fZQoaAZHQG/JQu27Wd5oB02bAWgIR0CbxXw4KhL5dX2UKGgGR0BwmVGCqZMMaAdNJQFoCEdAm+hir92ovXV9lChoBkdAcIYF+NLlFWgHTRIBaAhHQJvpuKqGUOd1fZQoaAZHQHH5QhStNi9oB00jAWgIR0Cb73Vlf7aadX2UKGgGR0BxXzH80k4WaAdNUQFoCEdAm/BrojfNzXV9lChoBkdAcbCPci4axWgHTSkBaAhHQJvxKi0v4/N1fZQoaAZHQHFd1N1yNn5oB0v8aAhHQJvyormQr+Z1fZQoaAZHQHFCRu4wyqNoB00WAWgIR0Cb8rVS4vvjdX2UKGgGR0BxSiUu+RHPaAdNkwFoCEdAm/NY0uUUwnV9lChoBkdAbKaXhwVCX2gHTSMBaAhHQJvzrAKv3al1fZQoaAZHQGwN9HUc4o9oB02IAWgIR0Cb9fiEg4ffdX2UKGgGR0BwSZZowmE5aAdNDgFoCEdAm/ZY+OfdynV9lChoBkdAbLKv9tMwlGgHTYYCaAhHQJv2iEbo8p11fZQoaAZHQHA4tJOFg2JoB01MAWgIR0Cb9obA1vVFdX2UKGgGR0ByEU6NlyzYaAdNXwFoCEdAm/erLMcIaHV9lChoBkdAbtMU9pyp72gHTQwBaAhHQJv3uYx+KCR1fZQoaAZHQHHIFCkXUH9oB00tAWgIR0Cb+gVW0Z3tdX2UKGgGR0Bw7xAE+xGEaAdNNgFoCEdAm/oNZJTVD3V9lChoBkdAcUcxwyZa3mgHTXYBaAhHQJv+0W43FUB1fZQoaAZHQG8w4Pf8/EBoB00nAWgIR0Cb/9Q7tAs1dX2UKGgGR0BzJsfIS13MaAdNTQFoCEdAnALHvx6OYXV9lChoBkdAblR5ZbILgGgHTToBaAhHQJwDHnnuAqd1fZQoaAZHQGvZVJtix3VoB00/AWgIR0CcA5Dc/MW5dX2UKGgGR0BxUemtQsPKaAdNUgFoCEdAnAVTgQ6IWXV9lChoBkdAcRPinHeaa2gHTaYBaAhHQJwGsGhVU+91fZQoaAZHQG6LJ7b+Lm9oB004AWgIR0CcB2XQtz0ZdX2UKGgGR0BxaqMuOCGvaAdNPAFoCEdAnAecwQDmsHV9lChoBkdAbePP1tfoimgHTUUBaAhHQJwH8C1Z1V51fZQoaAZHQG9ZA6Mir1doB00oAWgIR0CcB/9OymhudX2UKGgGR0BvZf8IiTt+aAdNTwFoCEdAnAgZwn6VMXV9lChoBkdAcEs7iADq4mgHTW0BaAhHQJwLYFA3T/h1fZQoaAZHQHGYeuaF23doB01FAWgIR0CcDDlcQiA2dX2UKGgGR0Bu9aKk2xY8aAdNdAFoCEdAnA6rg88s+XV9lChoBkdAcCDEG7jDK2gHTSEBaAhHQJwPLK/20zF1fZQoaAZHQG6L1clgMMJoB00sAWgIR0CcEJWN3np0dX2UKGgGR0BviLm0VrRCaAdNJwFoCEdAnBNySq2jPHV9lChoBkdAcMz7KJVKgGgHTUsBaAhHQJwVE1DSgGt1fZQoaAZHQG9W5o4+8oRoB01zAWgIR0CcF5YuTRpldX2UKGgGR0Bx3I8Md92HaAdNLQFoCEdAnBitZid8RnV9lChoBkdAcXeOxSpBHGgHTUEBaAhHQJwaZkNFz+51fZQoaAZHQHHubRjSXt1oB01hAWgIR0CcGySSNfgKdX2UKGgGR0BvnWWKMvRJaAdNgQFoCEdAnBvh5LRKH3V9lChoBkdAcffs+3YthGgHTeACaAhHQJwdYn9ehPF1fZQoaAZHQHDFxtHhCMRoB02IAWgIR0CcHviX6ZYxdX2UKGgGR0Bya6bBoEjgaAdNqgFoCEdAnCHzcdo373V9lChoBkdAcOidO6/Zd2gHTWEBaAhHQJwiUZbY9Pl1fZQoaAZHQG7FQd0aIepoB00eAWgIR0CcInfoRqXXdX2UKGgGR0BxuxvKlpGnaAdNHgFoCEdAnCSI2Kl54XV9lChoBkdAchgpljEvTWgHTdEBaAhHQJwlFyQxN7B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}