---
base_model: Huzaifa68/investment_v1
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:990
- loss:CosineSimilarityLoss
widget:
- source_sentence: Basic Information of Alfalah GHP Prosperity Planning Fund
sentences:
- Basic information for Alfalah GHP Stock Fund
- Investment objective about the Alfalah GHP Islamic Dedicated Equity Fund
- Investment objective for the Alfalah GHP Prosperity Planning Fund
- source_sentence: Basic Information of IGI Aggressive Income Fund
sentences:
- Investment objective for the IGI Aggressive Income Fund
- Investment objective about the Alfalah GHP Islamic Prosperity Planning Fund
- Alfalah GHP Sovereign Fund Basic information
- source_sentence: Basic Information of Alfalah GHP Income Fund
sentences:
- Alfalah GHP Stock Fund Basic information
- Investment objective about the Alfalah GHP Stock Fund
- Asset Allocation (as % of Total Assets) for the Alfalah GHP Income Fund
- source_sentence: Basic Information of Alfalah GHP Money Market Fund
sentences:
- Fund Performance for the Alfalah GHP Money Market Fund
- Basic information about Alfalah GHP Islamic Stock Fund
- Alfalah GHP Debt Sub Fund Basic information
- source_sentence: Basic Information of Alfalah GHP Prosperity Planning Fund
sentences:
- Basic information for Alfalah GHP Alpha Fund
- Basic information about Alfalah GHP Prosperity Planning Fund
- Investment Committee for the Alfalah GHP Islamic Pension Fund
---
# SentenceTransformer based on Huzaifa68/investment_v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Huzaifa68/investment_v1](https://huggingface.co/Huzaifa68/investment_v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Huzaifa68/investment_v1](https://huggingface.co/Huzaifa68/investment_v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Osama-Razzak/investment_v1")
# Run inference
sentences = [
'Basic Information of Alfalah GHP Prosperity Planning Fund',
'Basic information about Alfalah GHP Prosperity Planning Fund',
'Investment Committee for the Alfalah GHP Islamic Pension Fund',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 990 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details |
Basic Information of Alfalah GHP Money Market Fund
| Basic information for Alfalah GHP Money Market Fund
| 0.99
|
| Basic Information of Alfalah GHP Money Market Fund
| Basic information about Alfalah GHP Money Market Fund
| 0.98
|
| Basic Information of Alfalah GHP Money Market Fund
| Alfalah GHP Money Market Fund Basic information
| 0.99
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters