Create README.md (#1)
Browse files- Create README.md (a197664e04883f32401d9fd705f28d2935f5db82)
Co-authored-by: voidful <[email protected]>
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Usage:
|
2 |
+
```
|
3 |
+
import nlp2
|
4 |
+
import json
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
from asrp.code2voice_model.hubert import hifigan_hubert_layer6_code100
|
8 |
+
import IPython.display as ipd
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("Oscarshih/long-t5-base-SQA-15ep")
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Oscarshih/long-t5-base-SQA-15ep")
|
12 |
+
dataset = load_dataset("voidful/NMSQA-CODE")
|
13 |
+
cs = hifigan_hubert_layer6_code100()
|
14 |
+
|
15 |
+
qa_item = dataset['dev'][0]
|
16 |
+
question_unit = json.loads(qa_item['hubert_100_question_unit'])[0]["merged_code"]
|
17 |
+
context_unit = json.loads(qa_item['hubert_100_context_unit'])[0]["merged_code"]
|
18 |
+
answer_unit = json.loads(qa_item['hubert_100_answer_unit'])[0]["merged_code"]
|
19 |
+
|
20 |
+
# groundtruth answer
|
21 |
+
ipd.Audio(data=cs(answer_unit), autoplay=False, rate=cs.sample_rate)
|
22 |
+
|
23 |
+
# predict answer
|
24 |
+
inputs = tokenizer("".join([f"v_tok_{i}" for i in question_unit]) + "".join([f"v_tok_{i}" for i in context_unit]), return_tensors="pt")
|
25 |
+
code = tokenizer.batch_decode(model.generate(**inputs,max_length=1024))[0]
|
26 |
+
code = [int(i) for i in code.replace("</s>","").replace("<s>","").split("v_tok_")[1:]]
|
27 |
+
ipd.Audio(data=cs(code), autoplay=False, rate=cs.sample_rate)
|
28 |
+
```
|