sitloboi2012 commited on
Commit
96ac1a0
·
1 Parent(s): bb8f1a5

update handler

Browse files
Files changed (2) hide show
  1. Dockerfile +29 -0
  2. handler.py +2 -2
Dockerfile ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9-slim-bullseye AS base
2
+ WORKDIR /app
3
+
4
+ FROM base AS build
5
+ COPY ["requirements.txt", "./"]
6
+ RUN \
7
+ apt-get update && \
8
+ apt-get install -y --no-install-recommends \
9
+ git \
10
+ g++ && \
11
+ rm -rf /var/lib/apt/lists/* && \
12
+ # Install dependencies.
13
+ python -m venv ./venv && \
14
+ ./venv/bin/pip install --upgrade \
15
+ pip \
16
+ setuptools \
17
+ wheel && \
18
+ ./venv/bin/pip install --no-cache-dir -r ./requirements.txt && \
19
+ ./venv/bin/pip install --no-cache-dir 'git+https://github.com/facebookresearch/detectron2.git@d1e04565d3bec8719335b88be9e9b961bf3ec464'
20
+
21
+ FROM base AS final
22
+ RUN \
23
+ apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ tesseract-ocr && \
26
+ rm -rf /var/lib/apt/lists/*
27
+ COPY --from=build ["/app/venv", "./venv"]
28
+ # Copy the source code in last to optimize rebuilding the image.
29
+ COPY [".", "./"]
handler.py CHANGED
@@ -21,8 +21,8 @@ class EndpointHandler:
21
  self.PROCESSOR = LayoutLMv3Processor(self.FEATURE_EXTRACTOR, self.TOKENIZER)
22
  self.MODEL = LayoutLMv3ForSequenceClassification.from_pretrained("OtraBoi/document_classifier_testing").to(device)
23
 
24
- def __call__(self, data: bytes):
25
- image = Image.open(io.BytesIO(data)).convert("RGB")
26
  encoding = self.PROCESSOR(image, return_tensors="pt", padding="max_length", truncation=True)
27
 
28
  for k,v in encoding.items():
 
21
  self.PROCESSOR = LayoutLMv3Processor(self.FEATURE_EXTRACTOR, self.TOKENIZER)
22
  self.MODEL = LayoutLMv3ForSequenceClassification.from_pretrained("OtraBoi/document_classifier_testing").to(device)
23
 
24
+ def __call__(self, data: Dict):
25
+ image = Image.open(io.BytesIO(data["inputs"])).convert("RGB")
26
  encoding = self.PROCESSOR(image, return_tensors="pt", padding="max_length", truncation=True)
27
 
28
  for k,v in encoding.items():