File size: 2,429 Bytes
8852167
 
e383d16
 
8852167
 
4c91e68
8852167
4c91e68
8852167
0318013
 
4c91e68
8852167
0318013
8852167
 
 
 
fce07bc
4c91e68
b74280e
4c91e68
 
 
 
 
8852167
4c91e68
8852167
4c91e68
fce07bc
 
4c91e68
8852167
 
 
 
 
4c91e68
 
 
8852167
 
4c91e68
8852167
4c91e68
 
 
 
 
8852167
4c91e68
8852167
4c91e68
 
8852167
4c91e68
 
8852167
4c91e68
 
 
8852167
4c91e68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
base_model:
- meta-llama/Llama-3.1-8B
---

# Epos-8B

Epos-8B is a fine-tuned version of the base model **Llama-3.1-8B** from Meta, optimized for storytelling, dialogue generation, and creative writing. The model specializes in generating rich narratives, immersive prose, and dynamic character interactions, making it ideal for creative tasks.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65dbd5a60e6ad24551b3959f/P01YmhjrdTfpJBpyWfyy9.png)

---

 
## Model Details

### Model Description

Epos-8B is an 8 billion parameter language model fine-tuned for storytelling and narrative tasks.
- **Developed by:** P0x0
- **Funded by:** P0x0
- **Shared by:** P0x0
- **Model type:** Transformer-based Language Model
- **Language(s) (NLP):** Primarily English
- **License:** Apache 2.0
- **Finetuned from model:** [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)

### Model Sources

- **Repository:** [Epos-8B on Hugging Face](https://huggingface.co/P0x0/Epos-8B)
- **GGUF:** [GGUF by mradermache](https://huggingface.co/mradermacher/Epos-8b-GGUF)
- **imatrix GGUF:**[imatrix quants by mradermacher](https://huggingface.co/mradermacher/Epos-8b-i1-GGUF)
---

## Uses

### Direct Use

Epos-8B is ideal for:
- **Storytelling:** Generate detailed, immersive, and engaging narratives.
- **Dialogue Creation:** Create realistic and dynamic character interactions for stories or games.
## How to Get Started with the Model

To run the quantized version of the model, you can use [KoboldCPP](https://github.com/LostRuins/koboldcpp), which allows you to run quantized GGUF models locally.

### Steps:
1. Download [KoboldCPP](https://github.com/LostRuins/koboldcpp).
2. Follow the setup instructions provided in the repository.
3. Download the GGUF variant of Epos-8B from [Epos-8B-GGUF](https://huggingface.co/P0x0/Epos-8B-GGUF).
4. Load the model in KoboldCPP and start generating!

Alternatively, integrate the model directly into your code with the following snippet:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("P0x0/Epos-8B")
model = AutoModelForCausalLM.from_pretrained("P0x0/Epos-8B")

input_text = "Once upon a time in a distant land..."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))