ppo-LunarLander-v2 / config.json
PG's picture
RL agent Lunar Lander
6e5a9cd verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bbe5d077be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bbe5d077c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bbe5d077d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bbe5d077d90>", "_build": "<function ActorCriticPolicy._build at 0x7bbe5d077e20>", "forward": "<function ActorCriticPolicy.forward at 0x7bbe5d077eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bbe5d077f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bbe5d078040>", "_predict": "<function ActorCriticPolicy._predict at 0x7bbe5d0780d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bbe5d078160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bbe5d0781f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bbe5d078280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bbe5d019c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708251744838529760, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMpxz5a78S94nSOPhEJkbw9r2m+Hq2NPgAAAAAAAIA/Zj07vaR5bD454Qs+Mn+RvlelPTwBgC08AAAAAAAAAADNjii+3hTHPbWurT7V8Si+PcHHPRJ4Ez0AAAAAAAAAAI3/YD4h3nI/+fBFPkY3KL/dcCM+qrImvQAAAAAAAAAAM3pVPY+ySLocZzW84rH3uEzApDtNaGU4AACAPwAAgD/AIya+NGKCvB/KNrwjydC6oZvpPQ4ppzsAAIA/AACAP/Nczz2Fy8S7NTlWuwtvCzybZRA9qr7+vAAAgD8AAIA/MxUZvQXfprvc35+7MqzWPCvyYbx1cAs6AACAPwAAgD9aZPO9qXCJP5ciqL7FMDW/UqDQvRPmM70AAAAAAAAAALqKOb5TIIo/0HjavqTuIL+cx2S+aCV+vQAAAAAAAAAAU815PqvSID8SLMM8CsENvwpJPD7e5fO9AAAAAAAAAADN5qq8t3ERPminAb0Un1a+siMWO/2XaDwAAAAAAAAAAHPnkr0506A/LOclvvBYO79D1pC9UGh1vAAAAAAAAAAAZmuKPYWbtbnbN1u7QrOBuW25hjtIun06AAAAAAAAgD8ToiI+R3d4PvIuir6gxaq+T2obvDHAnb0AAAAAAAAAAKZ3LL6paHy8A//Yu1/0ZLoC6eA9wl00OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG98MZxaPjqMAWyUS92MAXSUR0CaMY5WilBQdX2UKGgGR0Bq99r9ETg3aAdNEAJoCEdAmjH0Z75VO3V9lChoBkdAcKi5GSZBs2gHS+loCEdAmjJi9mHxjXV9lChoBkdAYXmi+L3sX2gHTegDaAhHQJoykGOdXkp1fZQoaAZHQHKHwjMV1wJoB0vdaAhHQJoynLU1AJN1fZQoaAZHQG2HMFUyYXxoB0vSaAhHQJoyu8vmHQB1fZQoaAZHQG7VYsVclgNoB0vCaAhHQJoyumBOHnF1fZQoaAZHQHCPwc1fmcRoB0vOaAhHQJozE189fTl1fZQoaAZHQHAL3s1KoQ5oB0vxaAhHQJo0tODaoMt1fZQoaAZHQHHA17+kxh5oB0vEaAhHQJo0wFHJ9y91fZQoaAZHQHChZqVQhwFoB0vsaAhHQJo1AlWwNb11fZQoaAZHQHIkPAwfyPNoB0vhaAhHQJo15ymygPF1fZQoaAZHQHMJfRVp9JBoB0vqaAhHQJo2MKu0TlF1fZQoaAZHQHJZB3Roh6loB0vhaAhHQJo2aRxLkCF1fZQoaAZHQHJL2hqTKT1oB0vPaAhHQJo28vi97F91fZQoaAZHQHCkVR51Ng1oB0vkaAhHQJo3G0iQkop1fZQoaAZHQHFkBPoFFDxoB0vCaAhHQJo3NWV/tpp1fZQoaAZHQG6+g1vVEuxoB0vBaAhHQJo3ZRbbDdh1fZQoaAZHQHMIQjyFwkxoB0vNaAhHQJo3jb7CSA91fZQoaAZHQHJd/LTx5LRoB0u7aAhHQJo3rJYDDCR1fZQoaAZHQHAqKyWzF/BoB0vhaAhHQJo4I+jdpIt1fZQoaAZHQHGI62rn1WdoB0vvaAhHQJo4Ja4c3l11fZQoaAZHQHBE7VWjoIRoB0vNaAhHQJo5x2eQMhJ1fZQoaAZHQHMvnX/YJ3RoB0vQaAhHQJo6IHAymAN1fZQoaAZHQHI/fEjxCppoB0v8aAhHQJo6/ZkCmuV1fZQoaAZHQHEWIbbUPQRoB0vJaAhHQJo8JAcDKYB1fZQoaAZHQHA2yiItUXJoB0vmaAhHQJo8d5Pdl/Z1fZQoaAZHQG6WXDNyHVRoB0vzaAhHQJo8q7aqS5l1fZQoaAZHQHAkhfnfVI9oB0vEaAhHQJo86A/cFhZ1fZQoaAZHQHIlPek56t1oB00IAWgIR0CaPQmJm/WUdX2UKGgGR0BwiE3Lmp2maAdL1mgIR0CaPVLNOdoWdX2UKGgGR0BxncD/2kBTaAdL3GgIR0CaPVOYYzi0dX2UKGgGR0Bytf655JK8aAdLzGgIR0CaPhJXyRSxdX2UKGgGR0Bxa4vDgqEwaAdL0mgIR0CaPksCDEm6dX2UKGgGR0BxEW5H3DekaAdL/2gIR0CaPmBg/keZdX2UKGgGR0Bx/qAy2x6faAdNAwFoCEdAmj8rnDBMz3V9lChoBkdAcWVxnFo+OmgHS8VoCEdAmkAF3Ux20XV9lChoBkdAY0QapgkTpWgHTegDaAhHQJpAgzBRAKR1fZQoaAZHQHJoffXPJJZoB0vbaAhHQJpBKN3np0R1fZQoaAZHQG/65b6guh9oB0vGaAhHQJpDfs/pt791fZQoaAZHQHL4BWcSXdFoB0vQaAhHQJpDvHOryUd1fZQoaAZHQHGBCNKh+ORoB0vCaAhHQJpEDgOz6ad1fZQoaAZHQG9pB1klNURoB0vhaAhHQJpEIwTM7lt1fZQoaAZHQHFel72L5yloB00KAWgIR0CaRDCNS619dX2UKGgGR0Bxtz2dupCKaAdL2mgIR0CaRItnwob5dX2UKGgGR0BwLVQk5ZKWaAdL3WgIR0CaRIh73PAwdX2UKGgGR0Bw5OXMQmNSaAdLxGgIR0CaROMoc7yQdX2UKGgGR0Bw0vVSXMQmaAdLymgIR0CaRPgeA/cGdX2UKGgGR0Bxh7MzMzMzaAdL7GgIR0CaRRZPEbYLdX2UKGgGR0BuNi9mHxjKaAdL2GgIR0CaRSR+jM3ZdX2UKGgGR0BtcQeq7yxzaAdLwWgIR0CaRV5o4+8odX2UKGgGR0Bxf8KXv6TGaAdLw2gIR0CaRfQyyleodX2UKGgGR0BvGKhew9q2aAdLymgIR0CaRmwkPczqdX2UKGgGR0ButyuyNXHSaAdL22gIR0CaRzzuF6AwdX2UKGgGR0BSJ2Z3LV4HaAdLq2gIR0CaR7Qsf7rLdX2UKGgGR0BvA4MH8jzJaAdL0WgIR0CaSIpKzzErdX2UKGgGR0Bxjq+PBBRiaAdL32gIR0CaSVaK1og3dX2UKGgGR0By37m5lOGkaAdL02gIR0CaSWNfgJkYdX2UKGgGR0BySjVNHpbEaAdL12gIR0CaSYL4N7SidX2UKGgGR0BxSsBGQSzxaAdL0GgIR0CaSb/qgRK6dX2UKGgGR0BybEriEQGwaAdLz2gIR0CaSf7aIvaldX2UKGgGR0BzDAhfShJzaAdL3GgIR0CaSj7E5yU+dX2UKGgGR0BwzUn3L3bmaAdL6GgIR0CaSmPk7wKCdX2UKGgGR0ByCB3t8eCDaAdL6mgIR0CaSuISlFc6dX2UKGgGR0BxGo4hllK9aAdL1WgIR0CaSw2oNutPdX2UKGgGR0BkdtxyXD3uaAdN6ANoCEdAmkurNwBHTnV9lChoBkdAbiv6IFeOXGgHS99oCEdAmkvRAfMfR3V9lChoBkdAbdwKKHfuTmgHS9ZoCEdAmk0BIvrWy3V9lChoBkdAbl5GMn7YTWgHS8toCEdAmk51cD8tPHV9lChoBkdAcrjn5i3G42gHS89oCEdAmk8JyuIRAnV9lChoBkdAcDlAjIJZ4mgHS/FoCEdAmk+c3dbgTHV9lChoBkdAc/JRs/IKdGgHS+1oCEdAmk+toFmnO3V9lChoBkdAb5W/xlQMyGgHS8loCEdAmk+4v38GcHV9lChoBkdAb5Z4GD+R5mgHS9VoCEdAmk/jAnDziHV9lChoBkdAcoyllK9PDmgHS+5oCEdAmlBOYUnG83V9lChoBkdAcmav/BFd9mgHS+JoCEdAmlESdOIqLHV9lChoBkdAcIjwOvt+kWgHS99oCEdAmlEwGjbi63V9lChoBkdAb+pU3n6l+GgHS+RoCEdAmlIXd43WF3V9lChoBkdAcYnxyGSIQGgHS+xoCEdAmlJ7hFVktnV9lChoBkdAcd3W8RL9M2gHS/poCEdAmlRQC4jKPnV9lChoBkdAc4Y6g/Tsp2gHS+poCEdAmlVwF9roGXV9lChoBkdAcJR5H3Dej2gHS9RoCEdAmlXejRD1G3V9lChoBkdAcYFQ9RrJsGgHS9toCEdAmlZcRpUPx3V9lChoBkdAcWTUaQ3gk2gHS+1oCEdAmla0Hpr1unV9lChoBkdAcR/q7yxzJmgHS+NoCEdAmlfjhP0qY3V9lChoBkdAcHR3JPqLTGgHS/FoCEdAmlh/CEYfn3V9lChoBkdAc5KQKa5PM2gHS9NoCEdAmliJiqhlDnV9lChoBkdAcDIIoVmBfGgHS8loCEdAmlinSF49o3V9lChoBkdAb3yCgbp/w2gHTXwBaAhHQJpbPx0+1Sh1fZQoaAZHQG7ZUXpGFzxoB0viaAhHQJpbYukDZDl1fZQoaAZHQG4W2qtHQQdoB0vIaAhHQJpbsKD01651fZQoaAZHQG/PSUs4DLdoB02MAWgIR0CaXF150KZ2dX2UKGgGR0BucGvpyIYWaAdL1GgIR0CaXQEUj9n9dX2UKGgGR0ByJtWQwK0EaAdL8mgIR0CaXW7YChexdX2UKGgGR0ByJz6l+EytaAdL2mgIR0CaXYe/Yao/dX2UKGgGR0Bxwp2Pkq+baAdLz2gIR0CaXvsPJ7swdX2UKGgGR0BwKNXLeQ+2aAdL1WgIR0CaXyFn7HhkdX2UKGgGR0BpD/eP7vXtaAdNGwJoCEdAml+OwTufEnV9lChoBkdAZLG9fTkQw2gHTegDaAhHQJpgAKtxMnJ1fZQoaAZHQGVgGJvYODtoB03oA2gIR0CaYB0PH1e0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}