--- language: - en base_model: - unsloth/Llama-3.2-3B-Instruct license: llama3.2 model-index: - name: LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 62.92 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 23.34 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 11.33 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 3.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 4.87 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 23.5 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B name: Open LLM Leaderboard --- A much further trained version, this time done with full finetuning instead of DoRA. Similar ~50/50 mix of completion and instruct data. Note: This likely has refusals like [PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.1-SFT-3B](https://huggingface.co/PJMixers-Dev/LLaMa-3.2-Instruct-JankMix-v0.1-SFT-3B) since no focus was put on removing refusals. I'm working on a KTO DoRA to solve this, and possibly improve roleplay performance. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/PJMixers-Dev__LLaMa-3.2-Instruct-JankMix-v0.2-SFT-3B-details) | Metric |Value| |-------------------|----:| |Avg. |21.50| |IFEval (0-Shot) |62.92| |BBH (3-Shot) |23.34| |MATH Lvl 5 (4-Shot)|11.33| |GPQA (0-shot) | 3.02| |MuSR (0-shot) | 4.87| |MMLU-PRO (5-shot) |23.50|