File size: 4,380 Bytes
43ca25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: other
base_model: meta-llama/Meta-Llama-3-8B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: C014_llama3-8b-base_pretrain_20240428_005832
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# C014_llama3-8b-base_pretrain_20240428_005832

This model is a fine-tuned version of [/mnt/models-pku/progressalign/shared_storage/downloaded_models/llama3-8b-base](https://huggingface.co//mnt/models-pku/progressalign/shared_storage/downloaded_models/llama3-8b-base) on the C014_data dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2045

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_warmup_steps: 20
- num_epochs: 4.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.5789        | 0.0152 | 1    | 2.6458          |
| 2.5672        | 0.0758 | 5    | 2.6280          |
| 2.5751        | 0.1515 | 10   | 2.5314          |
| 2.418         | 0.2273 | 15   | 2.4634          |
| 2.4701        | 0.3030 | 20   | 2.4177          |
| 2.3904        | 0.3788 | 25   | 2.3785          |
| 2.3539        | 0.4545 | 30   | 2.3378          |
| 2.3101        | 0.5303 | 35   | 2.3082          |
| 2.3254        | 0.6061 | 40   | 2.2816          |
| 2.2762        | 0.6818 | 45   | 2.2614          |
| 2.2525        | 0.7576 | 50   | 2.2458          |
| 2.2777        | 0.8333 | 55   | 2.2321          |
| 2.2054        | 0.9091 | 60   | 2.2206          |
| 2.237         | 0.9848 | 65   | 2.2113          |
| 1.986         | 1.0606 | 70   | 2.2115          |
| 1.9373        | 1.1364 | 75   | 2.2217          |
| 1.9228        | 1.2121 | 80   | 2.2132          |
| 1.9084        | 1.2879 | 85   | 2.2118          |
| 1.9684        | 1.3636 | 90   | 2.2122          |
| 1.9126        | 1.4394 | 95   | 2.2094          |
| 1.9101        | 1.5152 | 100  | 2.2066          |
| 1.8496        | 1.5909 | 105  | 2.2058          |
| 1.9154        | 1.6667 | 110  | 2.2057          |
| 1.9233        | 1.7424 | 115  | 2.2056          |
| 1.9198        | 1.8182 | 120  | 2.2052          |
| 1.9229        | 1.8939 | 125  | 2.2048          |
| 1.8913        | 1.9697 | 130  | 2.2045          |
| 1.8814        | 2.0455 | 135  | 2.2046          |
| 1.8813        | 2.1212 | 140  | 2.2051          |
| 1.8912        | 2.1970 | 145  | 2.2058          |
| 1.9184        | 2.2727 | 150  | 2.2065          |
| 1.8662        | 2.3485 | 155  | 2.2071          |
| 1.8809        | 2.4242 | 160  | 2.2074          |
| 1.8591        | 2.5    | 165  | 2.2077          |
| 1.8731        | 2.5758 | 170  | 2.2079          |
| 1.8948        | 2.6515 | 175  | 2.2082          |
| 1.8876        | 2.7273 | 180  | 2.2082          |
| 1.8408        | 2.8030 | 185  | 2.2083          |
| 1.8931        | 2.8788 | 190  | 2.2082          |
| 1.8569        | 2.9545 | 195  | 2.2080          |
| 1.8621        | 3.0303 | 200  | 2.2079          |
| 1.8863        | 3.1061 | 205  | 2.2078          |
| 1.9021        | 3.1818 | 210  | 2.2079          |
| 1.8648        | 3.2576 | 215  | 2.2080          |
| 1.8443        | 3.3333 | 220  | 2.2081          |
| 1.8978        | 3.4091 | 225  | 2.2080          |
| 1.8658        | 3.4848 | 230  | 2.2080          |
| 1.8706        | 3.5606 | 235  | 2.2079          |
| 1.8855        | 3.6364 | 240  | 2.2078          |
| 1.8535        | 3.7121 | 245  | 2.2078          |
| 1.9062        | 3.7879 | 250  | 2.2079          |
| 1.8628        | 3.8636 | 255  | 2.2078          |
| 1.8484        | 3.9394 | 260  | 2.2077          |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1