--- license: other base_model: meta-llama/Meta-Llama-3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: C017_random_sample_llama3-8b-base_pretrain_20240504_182259 results: [] --- # C017_random_sample_llama3-8b-base_pretrain_20240504_182259 This model is a fine-tuned version of [/data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base](https://huggingface.co//data/pro-align/progressalign/shared_storage/downloaded_models/llama3-8b-base) on the C017_random_sample_data dataset. It achieves the following results on the evaluation set: - Loss: 2.4690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 20 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5442 | 0.2028 | 200 | 2.5552 | | 2.5376 | 0.4057 | 400 | 2.5096 | | 2.4487 | 0.6085 | 600 | 2.4831 | | 2.5324 | 0.8114 | 800 | 2.4690 | | 2.265 | 1.0142 | 1000 | 2.4733 | | 2.3002 | 1.2170 | 1200 | 2.4736 | | 2.29 | 1.4199 | 1400 | 2.4734 | | 2.2566 | 1.6227 | 1600 | 2.4725 | | 2.3052 | 1.8256 | 1800 | 2.4721 | | 2.2702 | 2.0284 | 2000 | 2.4734 | | 2.2411 | 2.2312 | 2200 | 2.4746 | | 2.2413 | 2.4341 | 2400 | 2.4749 | | 2.216 | 2.6369 | 2600 | 2.4749 | | 2.2696 | 2.8398 | 2800 | 2.4747 | | 2.2455 | 3.0426 | 3000 | 2.4752 | | 2.216 | 3.2454 | 3200 | 2.4753 | | 2.2348 | 3.4483 | 3400 | 2.4757 | | 2.238 | 3.6511 | 3600 | 2.4753 | | 2.2349 | 3.8540 | 3800 | 2.4752 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1